SWE-1 C-0 C-1

SWE-1 C-0 C Erik Bryland

IChO General instructions Cover sheet

Please return this cover sheet together with all the related question sheets.

SWE-1 C-0 G-1

International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org

General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has 9 problems.
- You can solve the problems in any order.
- You will have **5 hours** to solve all problems.
- You can **begin** working only after the **START** command is given.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

	Title	Total Score	Percentage
1	Hydrogen at a Metal Surface	24	11
2	Isotope Time Capsule	35	11
3	Lambert–Beer Law?	22	8
4	The Redox Chemistry of Zinc	32	11
5	Mysterious Silicon	60	12
6	The Solid-State Chemistry of Transition Metals	45	13
7	Playing with Non-benzenoid Aromaticity	36	13
8	Dynamic Organic Molecules and Their Chirality	26	11
9	Likes and Dislikes of Capsules	23	10
		Total	100

Physical Constants and Equations

Constants

Speed of light in vacuum	$c = 2.99792458 imes 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \mathrm{J \ s}$
Elementary charge	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Electric constant	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Avogadro constant	$N_{-} = 6.02214076 \times 10^{23} \mathrm{mol}^{-1}$
Boltzmann constant	$k_{\rm A} = 0.02214010 \times 10^{-10}$ Here
Earaday constant	$\frac{k_{\rm B} - 1.300049 \times 10^{-1}}{F - N_{\rm c}} \propto -0.64852221222100184 \times 10^{4} \text{C mol}^{-1}$
	$F = N_{A} \times e = 9.04035321235100164 \times 10^{\circ} \text{C mor}$
Gas constant	$R = N_{A} \times k_{B} = 8.31440201815324 J K + III0I^{-1}$
	$= 8.2057366081 \times 10^{-2} \text{ L atm K}^{-1} \text{ mol}^{-1}$
Unified atomic mass unit	$u = 1 Da = 1.66053907 \times 10^{-27} kg$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{atm} = 1.01325 imes 10^5 Pa$
Zero degree Celsius	$0 ^{\circ}\mathrm{C} = 273.15 \mathrm{K}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Electronvolt	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
Part-per-million	$1 \mathrm{ppm} = 10^{-6}$
Part-per-billion	$1 \mathrm{ppb} = 10^{-9}$
Part-per-trillion	$1 \mathrm{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

Equations

The ideal gas law	PV = nRT
-	, where P is the pressure, V is the volume, n is the amount of substance,
	<i>T</i> is the absolute temperature of ideal gas.
Coulomb's law	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, where F is the electrostatic force, $k_e (\simeq 9.0 \times 10^9 \mathrm{N}\mathrm{m^2}\mathrm{C^{-2}})$ is Coulomb's constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance between the charges.
The first law of thermo-	$\Delta U = q + w$
dynamics	, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.
Enthalpy H	H = U + PV
Entropy based on Boltz-	$S = k_{B} \ln W$
mann's principle S	, where W is the number of microstates.
The change of entropy	$\Delta S = rac{q_{rev}}{T}$
ΔS	, where $q_{\sf rev}$ is the heat for the reversible process.
Gibbs free energy G	G = H - TS
	$\Delta_{r}G^{\circ} = -RT\ln K = -zFE^{\circ}$
	, where K is the equilibrium constant, z is the number of electrons, E° is
	the standard electrode potential.
Reaction quotient Q	$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\circ} + RT\ln Q$
	For a reaction
	$a\mathbf{A} + b\mathbf{B} \rightleftharpoons c\mathbf{C} + d\mathbf{D}$
	$Q = \frac{ C D }{ D }$
	$[A]^u[B]^v$
	, where [A] is the concentration of A.

SWE-1 C-0 G-5

Heat change Δq	$\Delta q = n c_{m} \Delta T$
	, where $c_{\sf m}$ is the temperature-independent molar heat capacity.
Nernst equation for re-	$E = E^\circ + rac{RT}{zF} \ln rac{C_{ m ox}}{C_{ m red}}$
	, where $C_{\rm ox}$ is the concentration of oxidized substance, $C_{\rm red}$ is the concentration of reduced substance.
Arrhenius equation	$k = A \exp\left(-\frac{E_a}{RT}\right)$
	, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy
	$\exp(x) = e^x$
Lambert-Beer equation	$A = \varepsilon lc$
	, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.
Henderson-Hasselbalch	For an equilibrium
equation	$HA \rightleftharpoons H^+ + A^-$
	, where equilibrium constant is Λ_a ,
	$pH = pK_{a} + log\left(\frac{ T }{ HA }\right)$
Energy of a photon	$E = h\nu = h\frac{c}{\lambda}$
	, where $ u$ is the frequency, λ is the wavelength of the light.
The sum of a geometric	When $x \neq 1$,
series	$1 + x + x^{2} + \dots + x^{n} = \sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$
Approximation equation	When $x \ll 1$,
that can be used to solve problems	$\frac{1}{1-x} \simeq 1+x$

G0-6 English (Official)

SWE-1 C-0 G-6

Periodic Table

18	² Heitum 4.003	10 Neon 20.180	¹⁸ Ar Argon 39.948	36	Krypton 83.798	54	Xe	xenon 131.293	86	Вn	Radon [222]	118	og	Oganesson [294]							
17		9 F Fluorine 18.998	17 CI Chlorine 35.452	35	Bromine 79.904	53	-	lodine 126.904	85	At	Astatine [210]	117	Ts	Tennessine [293]	71	Lu		1/4.96/	103	۲	Lawrencium [262]
16		⁸ О Охудеп 15.999	16 Sultur 32.068	34	Selenium 78.971	52	Те	Tellurium 127.60	84	Ро	Polonium [210]	116	2	Livermorium [293]	70	γb	Ytterbium	1/3.045	102	٩	Nobelium [259]
15		7 N Nitrogen 14.007	15 P Phosphorus 30.974	33	AS Arsenic 74.922	51	Sb	Antimony 121.760	83	Bi	Bismuth 208.98	115	Mc	Moscovium [289]	69	T	Thulium	168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	¹⁴ Silicon 28.085	32 (Germanium 72.630	50	Sn	т _{іп} 118.710	82	Pb	Lead 207.2	114	Ē	Flerovium [289]	68	ш	Erbium	167.259	100	БП	Fermium [257]
13		5 В Boron 10.814	13 Aluminium 26.982	31	Gallium 69.723	49	Ч	I14.818	81	F	Thallium 204.384	113	ЧN	Nihonium [278]	67	Я	Holmium	164.930	66	Es	Einsteinium [252]
12			1	1 30	Znc Znc 65.38	48	В	Cadmium 112.414	80	Hg	Mercury 200.592	112	ő	Copernicium [285]	99	D	Dysprosium	162.500	98	ŭ	Californium [252]
11		active element]		⁵³ (CU Copper 63.546	47	Ag	silver 107.868	79	Au	Gold 196.967	111	Вg	Roentgenium [280]	65	Tb	Terbium	158.925	67	퓣	Berkelium [247]
10		s for the radio		28	NI Nickel 58.693	46	Рд	Palladium 106.42	78	Ъ	Platinum 195.084	110	Ds	Darmstadtium [281]	64	Gd	Gadolinium	157.25	96	С С	Curium [247]
6		[in parenthesi		27	CO Cobalt 58.933	45	ЧЧ	Rhodium 102.906	17	L	Iridium 192.217	109	Mt	Meitnerium [276]	63	Еu	Europium	151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		1 ²⁶	Fe Iron 55.845	44	Вu	Ruthenium 101.07	76	S	Osmium 190.23	108	Hs	Hassium [277]	62	Sm	Samarium	150.36	94	Pu	Plutonium [239]
7	Key:	113 Nhonium [278]		25	MIN Manganese 54.938	43	Tc	Technetium [99]	75	Re	Rhenium 186.207	107	Bh	Bohrium [272]	61	Pm	Promethium	[145]	93	dN	Neptunium [237]
9				24	Cr Chromium 51.996	42	Мо	Molybdenum 95.95	74	2	Tungsten 183.84	106	Sg	Seaborgium [271]	60	ΡŊ	Neodymium	144.242	92	⊃	Uranium 238.029
5				23	V Vanadium 50.942	41	Νb	Niobium 92.906	73	Та	Tantalum 180.948	105	Db	Dubnium [268]	59	Pr	Praseodymium	140.908	91	Ра	Protactinium 231.036
4				i 5	Titanium 47.867	40	Zr	Zirconium 91.224	72	Ŧ	Hafnium 178.49	104	ž	Rutherfordium [267]	58	Se	Cerium	140.116	06	Ч	Thorium 232.038
ε				24 5	Scandium 44.956	39	≻	Yttrium 88.906	57-71	La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids	57	La	Lanthanum	138.905	89	. Ac	Actinium [227]
2		⁴ Be Beryllium 9.012	12 Mg Magnesium 24.306	² 0	Ca calcium 40.078	38	Ś	Strontium 87.62	56	Ba	Barium 137.327	88	Ra	Radium [226]	57-71	La-Lu	Lanthanoids		89-103	Ac-Lr	Actinoids
÷	Hydrogen 1.008	3 Li Lithium 6.968	11 Na Sodium 22.990	19	Potassium 39.098	37	Вb	Rubidium 85.468	55	ပိ	Caesium 132.905	87	Ŀ	Francium [223]							

SWE-1 C-0 G-7

¹H NMR Chemical Shifts

 $\Delta \delta$ for one alkyl group-substitution: *ca.* +0.4 ppm

SWE-1 C-0 G-1

Internationella Kemiolympiaden 2021 i Japan 53:e IChO 2021 i Japan 25 juli – 2 augusti, 2021 https://www.icho2021.org

Allmänna instruktioner

- Du får bara använda permanent penna (inte blyertspenna) för att skriva dina svar.
- Din räknare får inte kunna programmeras.
- Detta prov innehåller 9 uppgifter.
- Du kan lösa uppgifterna i valfri ordning.
- Du har **5 timmar** på dig att lösa uppgifterna.
- Du får **börja** att arbeta endast efter att **START**-tecken givits.
- Alla resultat måste skrivas i de angivna svarsrutorna med en lämplig penna i **svarsformuläret**. Använd baksidan av frågeformuläret om du behöver kladdpapper. Kom ihåg att svar som skrivs utanför svarsrutorna inte kommer att bedömas.
- Skriv relevanta beräkningar där det behövs i svarsrutorna. Full poäng ges för korrekta svar endast då du har redovisat dina beräkningar.
- Provvakten kommer att tala om när det är **30 minuter** kvar före provets **STOPP-**signal.
- Du **måste avsluta** ditt arbete på given **STOPP**-signal. Du kan nollas i poängen om du avslutar arbetet i tid.
- Den officiella engelska versionen av detta prov är tillgängligt vid behov av förtydligande.
- Du är inte tillåten att lämna din provplats utan tillstånd. Om du behöver hjälp (trasig räknare, toabesök, etc), räck upp handen och vänta tills provvakten kommer.

LYCKA TILL!

Uppgifter och information om poängsättning

	Titel	Totalpoäng	Procent
1	Väte på en metallyta	24	11
2	Isotopisk tidskapsel	35	11
3	Lambert–Beers lag?	22	8
4	Zinks redoxkemi	32	11
5	Mystiskt kisel	60	12
6	Fasta tillståndets kemi för övergångsmetaller	45	13
7	Lek med icke-bensenoid aromaticitet	36	13
8	Dynamiska organiska molekyler och deras kiralitet	26	11
9	Vad en kapsel gillar och inte gillar	23	10
		Totalt	100

Fysikaliska konstanter och ekvationer

Konstanter

Speed of light in vacuum	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \mathrm{J \; s}$
Elementary charge	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Electric constant (permittivity of vacuum)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Avogadro constant	$N_{\rm A} = 6.02214076 imes 10^{23} { m mol}^{-1}$
Boltzmann constant	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Faraday constant	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gas constant	$R = N_{\rm A} imes k_{\rm B} = 8.31446261815324~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
Gas constant	$= 8.2057366081 imes 10^{-2} \mathrm{L} \;\mathrm{atm} \;\mathrm{K}^{-1} \mathrm{mol}^{-1}$
Unified atomic mass unit	$u = 1 \mathrm{Da} = 1.66053907 \times 10^{-27} \mathrm{kg}$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{atm} = 1.01325 imes 10^5 Pa$
Zero degree Celsius	$0 ^{\circ}\mathrm{C} = 273.15\mathrm{K}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Electronvolt	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
Part-per-million	$1 \text{ppm} = 10^{-6}$
Part-per-billion	$1 ppb = 10^{-9}$
Part-per-trillion	$1 ppt = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

Ekvationer

The ideal gas law	PV = nRT , where P is the pressure, V is the volume, n is the amount of substance, T is the absolute temperature of ideal gas.
Coulomb's law	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, where F is the electrostatic force, $k_e (\simeq 9.0 \times 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2})$ is Coulomb's constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance between the charges.
The first law of thermo- dynamics	$\Delta U=q+w$, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.
Enthalpy H	H = U + PV
Entropy based on Boltz- mann's principle <i>S</i>	$S = k_{\rm B} \ln W$, where W is the number of microstates.
The change of entropy ΔS	$\Delta S = \frac{q_{\rm rev}}{T}$, where $q_{\rm rev}$ is the heat for the reversible process.
Gibbs free energy <i>G</i>	G = H - TS $\Delta_r G^\circ = -RT \ln K = -zFE^\circ$, where K is the equilibrium constant, z is the number of electrons, E° is the standard electrode potential.
Reaction quotient <i>Q</i>	$\begin{split} &\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\circ} + RT \ln Q \\ &\text{For a reaction} \\ &aA + bB \rightleftharpoons cC + dD \\ &Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\ &\text{, where } [A] \text{ is the concentration of } A. \end{split}$

Heat change Δq	$\Delta q = nc_{m}\Delta T$, where c_{m} is the temperature-independent molar heat capacity.
Nernst equation for re- dox reaction	$E = E^{\circ} + \frac{RT}{zF} \ln \frac{C_{ox}}{C_{red}}$, where C_{ox} is the concentration of oxidized substance, C_{red} is the concentration of radius of substance.
Arrhenius equation	$k = A \exp\left(-\frac{E_a}{RT}\right)$, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy. exp $(x) = e^x$
Lambert–Beer equation	$A = \varepsilon lc$, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.
Henderson–Hasselbalch equation	For an equilibrium $HA \rightleftharpoons H^+ + A^-$, where equilibrium constant is K_a , $pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$
Energy of a photon	$E = h\nu = h\frac{c}{\lambda}$, where ν is the frequency, λ is the wavelength of the light.
The sum of a geometric series	When $x \neq 1$, $1 + x + x^2 + \dots + x^n = \sum_{i=0}^n x^i = \frac{1 - x^{n+1}}{1 - x}$
Approximation equation that can be used to solve problems	When $x \ll 1$, $\frac{1}{1-x} \simeq 1+x$

G0-6 Swedish (Sweden)

SWE-1 C-0 G-6

Periodiska systemet

α	Helium 4.003	10 Neon 20.180	¹⁸ Ar Argon 39.948	36	Krypton 83.798	Xe Xe	Xenon 131.293	86 Rn	Radon [222]	0 Oganesson [294]						
17	:	9 Fluorine 18.998	CI CI Chlorine 35.452	35 7	Bromine 79.904	- 23	lodine 126.904	85 At	Astatine [210]	117 TS Tennessine [293]		۲u	Lutetium 174.967	103	٦	Lawrencium [262]
46	2	⁸ O ^{Oxygen} 15.999	16 Sultur 32.068	34 0	Selenium 78.971	Te	Tellurium 127.60	Po Po	Polonium [210]	116 LV Livermorium [293]		4X ۲b	Ytterbium 173.045	102	٩	Nobelium [259]
ц Ц	2	7 N Nitrogen 14.007	15 Phosphorus 30.974	33	Arsenic 74.922	Sb	Antimony 121.760	Bi 83	Bismuth 208.98	115 MC Moscovium [289]		50 E	Thulium 168.934	101	Md	Mendelevium [258]
11		6 C Carbon 12.011	¹⁴ Silicon 28.085	32	Germanium 72.630	Sn Sn	т _{іп} 118.710	⁸² Pb	Lead 207.2	114 FI Flerovium [289]		⁸⁸ г	Erbium 167.259	100	ШЦ	Fermium [257]
4.2	2	5 B Boron 10.814	13 Aluminium 26.982	31 31	Gallium 69.723	⁴⁹	Indium 114.818	H BI	Thallium 204.384	113 Nhonium [278]		67 Ho	Holmium 164.930	66	Es	Einsteinium [252]
10	2		7	30	Zinc 65.38	⁴⁸ Cd	Cadmium 112.414	°°BH	Mercury 200.592	112 Copernicium [285]		98 DV	Dysprosium 162.500	86	ç	Californium [252]
÷	:	active element]		58 C	Copper 63.546	Ag	^{Silver} 107.868	Au Au	Gold 196.967	111 BG Roentgenium [280]		56 Tb	Terbium 158.925	67	剐	Berkelium [247]
Q.		s for the radio		28 NI:	Nickel 58.693	Pd	Palladium 106.42	Pt	Platinum 195.084	110 DS Darmstadtium [281]		64 Gd	Gadolinium 157.25	96	Cm	Curium [247]
0		[in parenthesi		27 7 0	Cobalt 58.933	⁴⁵ Rh	Rhodium 102.906	77 Ir	Iridium 192.217	109 Mt Meitnerium [276]		Eu Eu	Europium 151.964	95	Am	Americium [243]
α		atomic number Symbol name atomic weight		26 L	I C Iron 55.845	⁴⁴ Ru	Ruthenium 101.07	0s	Osmium 190.23	108 HS Hassium [277]		sm Sm	samarium 150.36	94	Pu	Plutonium [239]
7	Key:	113 Nhonium [278]		25 MM	Manganese 54.938	⁴³ Tc	Technetium [99]	75 Re	Rhenium 186.207	107 Bh Bohrium [272]		Pm 61	Promethium [145]	93	dN	Neptunium [237]
ų				24 24	Chromium 51.996	42 Mo	Molybdenum 95.95	74 W	Tungsten 183.84	106 Sg Seaborgium [271]		° PN	Neodymium 144.242	92	⊃	Uranium 238.029
ĸ				23	v Vanadium 50.942	⁴¹ Nb	Niobium 92.906	™ Ta	Tantalum 180.948	105 Db Dubnium [268]		Pr 59	Praseodymium 140.908	91	Ра	Protactinium 231.036
				22 H	Titanium 47.867	⁴⁰ Zr	Zirconium 91.224	H ⁷²	Hafhium 178.49	104 Rf Rutherfordium [267]		e s	Cerium 140.116	06	Th	Thorium 232.038
¢				21 CC	Scandium 44.956	39 K	Yttrium 88.906	⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103 Ac-Lr Actinoids		57 La	Lanthanum 138.905	68	Ac	Actinium [227]
•	1	4 Be Beryllium 9.012	12 Mg Magnesium 24.306	²⁰ ر	Calcium 40.078	°s Sr	Strontium 87.62	Ba	Barium 137.327	B8 Radium [226]		⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids
•	Hydrogen 1.008	3 Li Lithium 6.968	11 Na Sodium 22.990	6 Z	Potassium 39.098	37 Rb	Rubidium 85.468	CS CS	Caesium 132.905	⁸⁷ Fr Francium [223]	,					

SWE-1 C-0 G-7

¹H NMR Chemical Shifts

SWE-1 C-1 C-1

SWE-1 C-1 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Hydrogen at a Metal Surface

11 % of the total												
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total					
Points	6	4	5	3	3	3	24					
Score												

SWE-1 C-1 Q-1

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $H_2(g) \rightarrow 2H(ad)$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy in units of kJ per mole of H_2 . The solid line spacing is 20 kJ mol⁻¹, the dashed line spacing is 100 kJ mol⁻¹, and the spacing between solid and dashed lines is 80 kJ mol⁻¹. The zero-point vibration energy is ignored.

SWE-1 C-1 Q-2

A.1	For each of t (i) The intera (ii) The intera (iii) The dista	he following i tomic distanc atomic distanc nce of adsorb	tems (i)–(iii), <u>s</u> e for a gaseo ce between m bed H atoms f	select the closure us H ₂ molecu netal atoms (<i>d</i> from the surfa	sest value fro le / _M in Fig. 1) ace (h _{ad} in Fig.	m A–G. . 1)	6pt			
		A. 0.03 nm	B. 0.07 nm	C. 0.11 nm	D. 0.15 nm					
		E. 0.19 nm	F. 0.23 nm	G. 0.27 nm						

A.2For each of the following items (i)–(ii), select the closest value from A–H.4pt(i) the energy required for the dissociation of gaseous H2 to gaseous H $[H_2(g) \rightarrow 2H(g)]$ (ii) the energy released during the adsorption of a gaseous H2 [H2(g) $\rightarrow 2H(ad)$]A. 20 kJ mol⁻¹B. 40 kJ mol⁻¹C. 60 kJ mol⁻¹D. 100 kJ mol⁻¹

E. 150 kJ mol⁻¹ F. 200 kJ mol⁻¹ G. 300 kJ mol⁻¹ H. 400 kJ mol⁻¹

SWE-1 C-1 Q-4

Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

The reaction rates per surface site for adsorption, desorption, and absorption are $r_1[s^{-1}], r_2[s^{-1}]$ and $r_3[s^{-1}]$, respectively. They are expressed as:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

where $k_1 [s^{-1} Pa^{-1}]$, $k_2 [s^{-1}]$ and $k_3 [s^{-1}]$ are the reaction rate constants and P_{H_2} is the pressure of H_2 . Among the sites available on the surface, θ ($0 \le \theta \le 1$) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_1, r_2 \gg r_3$) and that θ remains constant.

B.1
$$r_3$$
 can be expressed as: 5pt
 $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5)
Express C using k_1 and k_2 .

A metal sample with a surface area of $S = 1.0 \times 10^{-3} \text{ m}^2$ was placed in a container (1L = $1.0 \times 10^{-3} \text{ m}^3$) with H₂ ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. The surface temperature was kept at T = 400 K. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$. Assume that H₂ is an ideal gas and that the volume of the metal sample is negligible.

- **B.2** Calculate the amount of H atoms in moles absorbed per unit area of the surface 3pt per unit time, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** At T = 400 K, C equals 1.0×10^2 Pa⁻¹. <u>Calculate</u> the value of k_3 at 400 K. If you 3pt did not obtain the answer to **B.2**, use $A = 3.6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** At a different T, $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ and $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$ are given. For r_3 as a 3pt function of P_{H_2} at this temperature, **select** the correct plot from (a)–(h).

Väte på en metallyta

11 % av totalpoängen							
Uppgift	A.1	A.2	B.1	B.2	B.3	B.4	Totalt
Maxpoäng	6	4	5	3	3	3	24
Poäng							

Väte är en möjlig framtida energikälla som kan ersätta fossila bränslen. Här undersöker vi processen när väte lagras i en metall. Processen är viktigt att förstå för att kunna transportera och lagra väte.

Del A

Väte absorberas in bulken (innandömet) av ett material via materialets yta. Låt oss först fokusera på adsorptionsprocessen på metallens yta, $H_2(g) \rightarrow 2H(ad)$, där gasformigt väte och adsorberat väte markeras med (g) respektive (ad).

Vätemolekyler (H₂) som når metallytan (M) dissocierar vid ytan och adsorberas som H-atomer (Fig. 1). Under adsorptionsprocessen representeras den potentiella energin för H₂ av två variabler: avståndet mellan väteatomerna, *d*, och höjden relativt metallatom-ytan, *z*. Vi antar att axeln genom de två väteatomerna alltid är parallell till metallytan och att masscentrum för båda väteatomerna alltid befinner sig någonstans på den vertikala prickade linjen i Fig. 1. I Fig 2. visas en kontur/höjdkurveplott av den potentiella energin för vätets dissociation vid ytan. Siffrorna visar den potentiella energin i enheten kJ per mol av H₂. Heldragna linjer visar en ökning på 20 kJ mol⁻¹, streckade linjer representerar en ökning på 100 kJ mol⁻¹, och ökningen i energi är 80 kJ mol⁻¹ mellan heldragna och streckade linjer.

SWE-1 C-1 Q-2

- A.1 För varje delfråga (i)–(iii), välj det värde som är närmast av alternativ A–G.
 6pt (i) Avståndet mellan atomerna (interatomiska avståndet) för en H₂-molekyl i gasfas.
 (ii) Avståndet mellan metallatomerna (d_M i figur 1).
 (iii) Avståndet från en adsorberad väteatom till metallytan (h_{ad} i figur 1).
 - A. 0,03 nm B. 0,07 nm C. 0,11 nm D. 0,15 nm E. 0,19 nm F. 0,23 nm G. 0,27 nm

A.2För varje delfråga (i)-(ii), **välj** det värde som är närmast av alternativ A-H.4pt(i) Energin som krävs för att gasformigt H2 ska dissociera till gasformigt H $[H_2(g) \rightarrow 2H(g)]$ 4pt(ii) Energin som frigörs när gasformigt H2 adsorberas $[H_2(g) \rightarrow 2H(ad)]$ 4ptA. 20 kJ mol⁻¹B. 40 kJ mol⁻¹C. 60 kJ mol⁻¹D. 100 kJ mol⁻¹E. 150 kJ mol⁻¹F. 200 kJ mol⁻¹G. 300 kJ mol⁻¹H. 400 kJ mol⁻¹

SWE-1 C-1 Q-4

Del B

De adsorberade väteatomerna kan antingen absorberas in i bulken eller rekombineras och desorberas tillbaka till gasformiga vätemolekyler, som kan ses i reaktion (1a) och (1b). H(ab) representerar en väteatom som absorberats in i bulken av metallen.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

Reaktionshastigheten per adsorptionsplats för adsorption, desorption och absorption är $r_1[s^{-1}], r_2[s^{-1}]$ och $r_3[s^{-1}]$. Hastighetsuttrycken är:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

där k_1 [s⁻¹ Pa⁻¹], k_2 [s⁻¹] och k_3 [s⁻¹] är hastighetskonstanterna för respektive reaktion och P_{H_2} är trycket av H₂. Av alla möjliga adsorptionsplatser på metallytan, anger θ ($0 \le \theta \le 1$) andelen platser som är ockuperade av väte-atomer. Vi antar att adsorptionen och desorptionen är snabb jämfört med absorptionen ($r_1, r_2 \gg r_3$) och att θ är konstant över tiden.

B.1 r_3 kan uttryckas som:5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5)Uttryck C med hjälp av k_1 och k_2 .

En metallbit med ytarean $S = 1, 0 \times 10^{-3} \text{ m}^2$ placerades i en behållare (1, 0 dm³) med H₂ ($P_{\text{H}_2} = 1, 0 \times 10^2$ Pa). Densiteten av väteatom-adsorptionsplatser på metallytan var $N = 1, 3 \times 10^{18} \text{ m}^{-2}$. Yttemperaturen hölls konstant på T = 400 K. Under tiden som reaktion (1) fortgick minskade P_{H_2} med en konstant hastighet av $v = 4, 0 \times 10^{-4}$ Pa s⁻¹. Anta att H₂ är en ideal gas och att volymen av metallbiten är försumbar.

- **B.2** Beräkna antalet H-atomer som absorberats per enhetsarea av ytan per enhets- 3pt tid, i mol, $A \text{ [mol s}^{-1} \text{ m}^{-2}]$.
- **B.3** Vid T = 400 K, är C lika med $1, 0 \times 10^2$ Pa⁻¹. **Beräkna** värdet av k_3 vid 400 K. Om du inte beräknade svaret i **B.2**, använder du $A = 3, 6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** Vid en annan temperatur *T*, är $C = 2,5 \times 10^3 \text{ Pa}^{-1}$ och $k_3 = 4,8 \times 10^{-2} \text{ s}^{-1}$. För denna temperaturen <u>välj</u> den funktion (a)–(h) som korrekt beskriver r_3 som en funktion av P_{H_2} .

A1-1 Swedish (Sweden)

SWE-1 C-1 A-1

Väte på en metallyta

Del A

A.1 (6 pt)

Del B

B.1 (5 pt)

SWE-1 C-1 A-2

B.2 (3 pt)

 $\underline{A} =$

mol s⁻¹ m⁻²

SWE-1 C-1 A-3

B.3 (3 pt)		
<i>k</i> _	c-1	
<u>k3</u> –		
B.4 (3 pt)		

SWE-1 C-2 C-1

SWE-1 C-2 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Isotope Time Capsule

11 % of the total					
Question	A.1	A.2	A.3	A.4	Total
Points	8	8	10	9	35
Score					

Molecular entities that differ only in isotopic composition, such as CH_4 and CH_3D , are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

The entropy, *S*, increases with increasing the number of possible microscopic states of a system, *W*:

$$S = k_{\rm B} \ln W \tag{2}$$

W = 1 for ${}^{12}C^{16}O_2$ and ${}^{12}C^{18}O_2$. In contrast, W = 2 for a ${}^{12}C^{16}O^{18}O$ molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two ${}^{12}C^{16}O^{18}O$ molecules, $W = 2^2 = 4$.

A.1 The enthalpy change,
$$\Delta H$$
, of eq. 3 is positive regardless of the temperature. 8pt
 $H_2 + DI \rightleftharpoons HD + HI$ (3)
Calculate the equilibrium constants, *K*, for eq. 3 at very low (think of $T \rightarrow 0$) and
very high (think of $T \rightarrow +\infty$) temperatures. Assume that the reaction remains
unchanged at these temperatures and that ΔH converges to a constant value
for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

$$2\mathsf{H}\mathsf{D} \rightleftharpoons \mathsf{H}_2 + \mathsf{D}_2 \qquad \qquad K = \frac{[\mathsf{H}_2][\mathsf{D}_2]}{[\mathsf{H}\mathsf{D}]^2} \tag{4}$$

At T = 0 K, the vibrational energy of a diatomic molecule whose vibration frequency is ν [s⁻¹] is expressed as:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, $m_1 \ {\rm and} \ m_2,$ according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

The vibration of H₂ is at 4161.0 cm⁻¹ when reported as a wavenumber. **Calculate** the ΔH of the following equation at T = 0 K in units of J mol⁻¹. A.2 8pt

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Assume that:

- only the vibrational energy contributes to the ΔH .
- the k values for H₂, HD, and D₂ are identical.
 the mass of H to be 1 Da and the mass of D to be 2 Da.

The molar ratio of H₂, HD, and D₂ depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D₂.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Here, R_{D_2} refers to $\frac{[D_2]}{[H_2]}$ in the sample and $R_{D_2}^*$ to $\frac{[D_2]}{[H_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 Calculate Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.

SWE-1 C-2 Q-4

In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO₂ molecules with molecular weights of 44 and 47, which are described as CO₂[44] and CO₂[47] below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} refers to $\frac{[CO_2[47]]}{[CO_2[44]]}$ in the sample and R_{47}^* to $\frac{[CO_2[47]]}{[CO_2[44]]}$ at $T \to +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

	¹² C	¹³ C
natural abundance	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
natural abundance	0.997621	0.0003790	0.0020000

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5} . 9pt **Estimate** the temperature using this R_{47} . This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of $CO_2[47]$ for the calculation.

Isotopisk tidskapsel

11 % av totalpoängen					
Uppgift	A.1	A.2	A.3	A.4	Totalt
Maxpoäng	8	8	10	9	35
Poäng					

Molekylära föreningar där den enda skillnaden är vilka isotoper atomerna består av, som CH_4 och CH_3D , kallas isotopologer. Isotopologer antas ha exakt samma kemiska egenskaper. Men i verkligheten kan isotopologers egenskaper vara lite olika.

Anta att alla föreningar i denna uppgiften är i gasfas.

Studera följande jämvikt:

Entropin, *S*, ökar när antalet möjliga mikroskopiska tillstånd av systemet, *W* ökar:

$$S = k_{\mathsf{B}} \ln W \tag{2}$$

W = 1 för ${}^{12}C^{16}O_2$ och ${}^{12}C^{18}O_2$. Men W = 2 för en molekyl ${}^{12}C^{16}O^{18}O$, då syreatomerna är skiljbara (distinguishable) i denna molekyl. Då högersidan av jämvikten i ekv. 1 innehåller två molekyler ${}^{12}C^{16}O^{18}O$ så blir, $W = 2^2 = 4$.

A.1Entalpiskillnaden,
$$\Delta H$$
, i ekv. 3 är positiv för alla temperaturer.8pt $H_2 + DI \rightleftharpoons HD + HI$ (3)Beräkna jämviktskonstanten, K, för ekv. 3 vid en väldigt låg temperatur (tänk

Beräkna jämviktskonstanten, K, för ekv. 3 vid en väldigt låg temperatur (tänk $T \rightarrow 0$) samt vid en väldigt hög temperatur (tänk $T \rightarrow +\infty$). Anta att reaktionen (ekv. 3) sker vid alla temperaturer och att ΔH konvergerar till ett konstant värde vid höga temperaturer.

Δ*H* för följande process kan förklaras med hjälp av molekylära vibrationer.

$$2\mathsf{H}\mathsf{D} \rightleftharpoons \mathsf{H}_2 + \mathsf{D}_2 \qquad \qquad K = \frac{[\mathsf{H}_2][\mathsf{D}_2]}{[\mathsf{H}\mathsf{D}]^2} \tag{4}$$

Vid *T* = 0 K, kan vibrationsenergin av en diatomär molekyl med vibrationsfrekvensen ν [s⁻¹] skrivas som:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Där k är vibrationens kraftkonstant och μ är molekylens reducerade massa, som kan uttryckas som massan av de två atomerna i den diatomära molekylen, m_1 and m_2 , enligt:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 Vibrationen av H₂ ses vid 4 161,0 cm⁻¹ när den anges som ett vågtal. **Beräkna** 8pt ΔH för följande ekvation vid T = 0 K, i enheten J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Anta:

- att enbart vibrationsenergin bidrar till ΔH .
- att k-värderna för H₂, HD, och D₂ är identiska.
- att massan av H är 1 Da och att massan av D är 2 Da.

Den molära andelen av H₂, HD, och D₂ beror av temperaturen för systemet i jämvikt. Här är Δ_{D_2} definierad som ändringen av den molära andelen av D₂.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

 R_{D_2} är $\frac{[D_2]}{[H_2]}$ i provet och $R_{D_2}^*$ är $\frac{[D_2]}{[H_2]}$ då $T \to +\infty$. Notera att då $T \to +\infty$ blir fördelningen av isotoperna slumpmässig.

A.3Beräkna
 Δ_{D_2} . Använd den naturligt förekommande andelen av D och att den
isotopiska reaktionen är i jämvikt, vid den temperatur då K i ekv. 4 är 0,300. Anta
att den naturligt förekommande andelen av D och H är $1,5576 \times 10^{-4}$ respektive
 $1-1,5576 \times 10^{-4}$.10pt

Generellt så ökar den molära andelen av den dubbelt substituerade isotopologen (isotopologen som innehåller två tunga isotop-atomer i en molekyl) med minskad temperatur. Den molära andelen av CO₂-molekyler som har molekylvikten 44 samt 47, betecknas nedan CO₂[44] samt CO₂[47]. Storheten/värdet Δ_{47} definieras som:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} är $\frac{[CO_2[47]]}{[CO_2[44]]}$ i provet och R_{47}^* är $\frac{[CO_2[47]]}{[CO_2[44]]}$ då $T \to +\infty$. Den naturliga förekomsten av kol- och syreisotoper ses nedan; ignorera alla isotoper som inte visas nedan.

	¹² C	¹³ C	
Naturlig förekomst	0,988888	0,011112	

	¹⁶ O	¹⁷ O	¹⁸ O
Naturlig förekomst	0,997621	0,0003790	0,0020000

Temperaturberoendet för storheten Δ_{47} temperaturberoende följer nedanstående uttryck/fördelning, där T är den absoluta temperaturen i enheten K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 R_{47} -värdet av ett fossilt plankton taget på havsbotten vid Antarktis var 4, 50865 × 9pt 10^{-5} . **Uppskatta** temperaturen med hjälp av detta R_{47} -värde. Denna temperaturen ska tolkas som temperaturen i luften under den tidsperiod som det analyserade planktonet levde. Använd enbart den vanligast förekommande isotopologen av CO₂[47] för beräkningen.

Isotopisk tidskapsel

 $T \rightarrow 0: K =$

A.1 (8 pt)

, $T
ightarrow +\infty: K =$

A.2 (8 pt)	
$\Delta H =$	J mol ⁻¹

A.3 (10 pt) $\Delta_{\rm D_2} =$

A.4 (9 pt)	
$\underline{T} = \mathbf{K}$	

SWE-1 C-3 C-1

SWE-1 C-3 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Lambert-Beer Law?

8 % of the total						
Question A.1 B.1 B.2 Total						
Points	6	22				
Score						

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution **X** was prepared using HA and NaA. The concentrations [A⁻], [HA], and [H⁺] in solution **X** are 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹, and 1.00×10^{-4} mol L⁻¹, respectively, which are correlated via the following acid-base equilibrium:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

The optical path length is *l* in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of **X** was A_1 at a wavelength of λ_1 . Then, solution **X** was diluted 10pt to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1 . **Determine** the ratio $\varepsilon_{HA}/\varepsilon_{A^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A⁻, respectively, at λ_1 .

SWE-1 C-3 Q-2

Part B

Let us consider the following equilibrium in the gas phase.

$$D \rightleftharpoons 2M$$
 (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of S (see the figure below) at a pressure P, and equilibrium is established while the total pressure is kept at P. The absorbance of the gas is $A = \varepsilon(n/V)l$, where ε , n, V, and l are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

	Initia	state	After equilibrium		
	D M		D	М	
Partial pressure	Р	0	p_{D}	p_{M}	
Amount in moles	n_0	0	n _D	n_{M}	
Volume	V ₀		I	7	

- **B.1** The absorbance of the gas at λ_{B1} measured from direction x ($l = l_x$) was A_{B1} 6pt both at the initial state and after the equilibrium. Determine the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B1} , where ε_D and ε_M represent the absorption coefficients of D and of M, respectively.
- **B.2** The absorbance of the gas at λ_{B2} measured from direction y was A_{B2} both at the initial state ($l = l_{y0}$) and after the equilibrium ($l = l_y$). **Determine** the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B2} .

Lambert-Beers lag?

8 % av totalpoängen						
Uppgift A.1 B.1 B.2 Totalt						
Maxpoäng 10 6 6 22						
Poäng						

I den här uppgiften kan du försumma absorptionen av kyvetten och av lösningsmedlet. Alla lösningar och gaser håller konstant temperatur 25 °C.

Del A

En vattenlösning X framställdes av HA och NaA. Koncentrationerna av [A⁻], [HA], och [H⁺] i lösning **X** var, $1,00 \times 10^{-2}$ mol dm⁻³, $1,00 \times 10^{-3}$ mol dm⁻³, respektive $1,00 \times 10^{-4}$ mol dm⁻³. Ämnena ingår i följande syra-basjämvikt:

$$\mathsf{H}\mathsf{A} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{H}\mathsf{A}]} \tag{1}$$

Kyvettens längd är *l* i del A. Densitetsförändringen vid utspädning kan försummas. Vi antar att det inte sker några andra kemiska reaktioner än den som anges i ekvation 1.

A.1 Absorbansen av lösning **X** var A_1 vid våglängden λ_1 . Därefter späddes lösning 10pt **X** till dubbla startvolymen med saltsyra med pH = 2,500. Efter utspädningen var absorbansen fortfarande A_1 vid λ_1 . **Bestäm** förhållandet $\varepsilon_{HA}/\varepsilon_{A^-}$, där ε_{HA} och ε_{A^-} representerar absorptionskoefficienterna för HA och A⁻, vid λ_1 .

SWE-1 C-3 Q-2

Del B

Låt oss betrakta följande jämvikt i gasfas.

$$D \rightleftharpoons 2M$$
 (2)

Ren gas D fylls upp i en rätblocksformad kyvett med en genomskinlig flyttbar vägg med tvärsnittsarean S (se figuren nedan) vid trycket P, och jämvikt ställer in sig samtidigt som trycket hålls konstant vid P. Absorbansen av gasen är $A = \varepsilon(n/V)l$, där ε , n, V, och l uttrycker absorptionskoefficienten, substansmängden gas i mol, gasvolymen, och kyvettlängden. Vi antar att alla ämnen i gasblandningen beter sig som ideala gaser.

Använd följande definitioner vid behov.

	Vid s	start	Vid jämvikt		
	D	М	D	М	
Deltryck (partialtryck)	P 0		p_{D}	p_{M}	
Substansmängden i mol	n_0	0	n_{D}	n_{M}	
Volym	V_0		V		

- **B.1** Absorbansen av gasen vid λ_{B1} uppmätt i riktning x (då $l = l_x$) var A_{B1} både vid for start och vid jämvikt. **Bestäm** förhållandet $\varepsilon_D / \varepsilon_M$ vid λ_{B1} , där ε_D och ε_M representerar absorptionkoefficienterna för D samt för M.
- **B.2** Absorbansen av gasen vid λ_{B2} uppmätt i riktning y var A_{B2} både vid start ($l = l_{y0}$) 6pt och vid jämvikt ($l = l_y$). **Bestäm** förhållandet $\varepsilon_D / \varepsilon_M$ vid λ_{B2} .

A3-1 Swedish (Sweden)

Lambert–Beers lag?

SWE-1 C-3 A-1

Del A

A.1 (10 pt)

(Fortsättning på nästa sida)

A.1 (cont.) $\varepsilon_{\rm HA}/\varepsilon_{\rm A^-} =$

SWE-1 C-3 A-2

Del B

B.1 (6 pt)

 $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

SWE-1 C-3 A-3

B.2 (6 pt) $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

SWE-1 C-3 A-4

SWE-1 C-4 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

The Redox Chemistry of Zinc

	11 % of the total							
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total	
Points	6	5	4	3	5	9	32	
Score								

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $Zn(OH)_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \qquad K_{\operatorname{sp}} = 1.74 \times 10^{-17}$$
 (1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq) \qquad K_2 = 6.47 \times 10^{-2}$$
(3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

The solubility, *S*, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** When the equilibria in eq. 1–4 are established, <u>calculate</u> the pH range 6pt in which $[Zn(OH)_2(aq)]$ is the greatest among $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ and $[Zn(OH)_4^{2-}(aq)]$.
- **A.2** A saturated aqueous solution of $Zn(OH)_2(s)$ with pH = 7.00 was prepared and 5pt filtered. NaOH was added to this filtrate to increase its pH to 12.00. <u>Calculate</u> the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. <u>Calculate</u> the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{ZnO}(300^{\circ}C) =$ -2.90×10^{2} kJ mol⁻¹ and $\Delta G_{H_{2}O}(300^{\circ}C) = -2.20 \times 10^{2}$ kJ mol⁻¹, respectively.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E° .

$$\operatorname{Zn}(\mathbf{s}) + \frac{1}{2}\operatorname{O}_{2}(\mathbf{g}) \to \operatorname{ZnO}(\mathbf{s})$$
 $E^{\circ} = 1.65 \,\mathrm{V}$ (8)

B.2 A zinc–air battery was discharged at 20 mA for 24 hours. <u>Calculate</u> the change 3pt in mass of the negative electrode (anode) of the battery.

Mt. Fuji

B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environment. <u>Calculate</u> the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are -38 °C (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

at altitude h [m] and temperature T [°C]. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{ZnO}(-38^{\circ}C) = -3.26 \times 10^2 \text{ kJ mol}^{-1}$ at $-38^{\circ}C$ and 1 bar.

B.4 <u>**Calculate**</u> the Gibbs energy change for reaction (6) at $25 \degree$ C. Note that the standard reduction potentials, $E^{\circ}(Zn^{2+}/Zn)$ and $E^{\circ}(O_2/H_2O)$ at $25 \degree$ C and 1 bar are given as (10) and (11), respectively.

 $Zn^{2+} + 2e^- \rightarrow Zn$ $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

Zinks redoxreaktioner

11 % av totalpoängen							
Uppgift	A.1	A.2	B.1	B.2	B.3	B.4	Totalt
Maxpoäng	6	5	4	3	5	9	32
Poäng							

Zink har sedan länge använts i legeringar såsom mässing och stålmaterial. Zink som förekommer i industriellt avloppsvatten separeras genom en utfällningsreaktion för att rena vattnet. Den erhållna utfällningen reduceras så att zinkmetall bildas, som sedan kan återanvändas.

Del A

Reaktionerna 1–4 visar jämvikts
reaktioner för upplösning av zinkhydroxid Zn(OH)_2(s) vid 25 °C med korresponder
ande jämviktskonstanter.

$$Zn(OH)_2(s) \rightleftharpoons Zn^{2+}(aq) + 2OH^{-}(aq) \qquad K_{sp} = 1.74 \times 10^{-17}$$
(1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq) \qquad K_2 = 6.47 \times 10^{-2}$$
(3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

Lösligheten, *S*, av zink (koncentrationen av zink i en mättad vattenlösning) ges av ekvation 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** <u>**Beräkna**</u> med hjälp av jämviktsreaktionerna 1-4 inom vilken pH-intervall som 6pt $[Zn(OH)_2(aq)]$ dominerar koncentrationsmässigt över $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ och $[Zn(OH)_4^{2-}(aq)]$.
- **A.2** En mättad vattenlösning av $Zn(OH)_2(s)$ med pH = 7,00 bereddes och filtrerades. 5pt NaOH tillsattes till den filtrerade lösning för att öka pH till 12,00. <u>Beräkna</u> molprocenten zink som fälls ut när pH ökar från 7,00 till 12,00. Försumma volymoch temperaturförändringen.

Del B

Den återvunna zinkhydroxiden värms och zinkoxid erhålls enligt reaktionen nedan:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

Zinkoxiden reduceras därefter till metallisk zink med hjälp av vätgas enligt reaktionen:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1 För att reaktion (7) ska ske vid ett vätgastryck på 1 bar är det nödvändigt att minska deltrycket (partialtrycket) av vattenångan som bildas. **Beräkna** den övre gränsen för vattnets deltryck (partialtryck) för att reaktion (7) ska ske vid 300 °C. Gibbs fria bildningsenergi för zinkoxid och vattenånga vid 300 °C och 1 bar (för alla gasformiga ämnen) är $\Delta G_{znO}(300^{\circ}C) = -2,90 \times 10^{2} \text{ kJ mol}^{-1}$ respektive $\Delta G_{H_2O}(300^{\circ}C) = -2,20 \times 10^{2} \text{ kJ mol}^{-1}$

Metalliskt zink används som negativt elektrodmaterial (anod) i metall-luft batterier. Elektroden består av Zn and ZnO. Följande redoxreaktion sker i elektroden vid generering av elektricitet med den elektromotoriska spänningen (ems), E° , vid 25 °C och 1 bar.

$$\operatorname{Zn}(s) + \frac{1}{2}O_2(g) \to \operatorname{ZnO}(s)$$
 $E^\circ = 1.65 \,\mathrm{V}$ (8)

B.2 Ett zink-luft batteri laddades ur vid 20 mA under 24 timmar. **Beräkna** föränd- 3pt ringen i massa av den negativa elektroden (anoden) i batteriet.

Berget Fuji

B.3 Zink-luft batteriets ems påverkas av omgivningen. Beräkna ems-värdet på top-5pt pen av berget Fuji, där temperaturen är -38 °C (i februari) och höjden över havet är 3 776 m. Atmosfärstrycket kan beräknas enligt $P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257}$ (9) där h[m] är höjden över havet och $T[^{\circ}C]$ är temperaturen. Molprocenten av syrgas i luften är 21%. Gibbs fria energi för reaktion (8) är $\Delta G_{7nO}(-38^{\circ}\text{C}) =$ $-3,26 \times 10^2$ kJ mol⁻¹ vid -38 °C och 1 bar. **B.4** Beräkna ändringen i Gibbs fria energi för reaktion (6) vid 25 °C. Notera att stan-9pt dardreduktionspotentialerna för, $E^{\circ}(Zn/Zn^{2+})$ och $E^{\circ}(O_2/H_2O)$ vid 25 °C och 1 bar ges av uttrycken (10) respektive (11). $Zn^{2+} + 2e^- \rightarrow Zn$ $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10) $\mathrm{O_2} + 4\mathrm{H^+} + 4\mathrm{e^-} \rightarrow 2\mathrm{H_2O}$ $E^{\circ}(O_2/H_2O) = 1.23 V$ (11)

A4-1 Swedish (Sweden)

Zinks redoxreaktioner

SWE-1 C-4 A-1

Del A

A.1 (6 pt)

< pH <

A.2 (5 pt)	
<u>%</u>	

Del B			
B.1 (4 pt)			
$p_{H_2O=}$	bar		
B.2 (3 pt)			
	g		

B.3 (5 pt)	
V	

B.4 (9 pt)

 $\Delta G^{\circ} = \qquad \qquad {\rm J}\,{\rm mol}^{-1}$

SWE-1 C-5 C-1

SWE-1 C-5 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Mysterious Silicon

12 % of the total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Points	9	7	6	10	5	15	8	60
Score								

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as $R^1-Si \equiv Si-R^1$ (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

When $R^1-Si \equiv Si-R^1$ is treated with an alkyne ($R^2-C \equiv C-R^2$), the four-membered-ring compound **A** is formed as an initial intermediate. Further reaction of another molecule of $R^2-C \equiv C-R^2$ with **A** affords isomers **B** and **C**, both of which have benzene-like cyclic conjugated structures, so-called 'disilabenzenes' that contain a six-membered ring and can be formulated as $(R^1-Si)_2(R^2-C)_4$.

SWE-1 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

The ¹³C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for **B** and one signal for **C**.

- **A.1 Draw** the structural formulae of **A**, **B**, and **C** using R¹, R², Si, and C, with one of 9pt the possible resonance structures.
- **A.2** <u>**Calculate**</u> the aromatic stabilization energy (ASE) for benzene and **C** (in the case 7pt of $R^1 = R^2 = H$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

When a xylene solution of **C** is heated, it undergoes isomerization to give an equilibrium mixture of compounds **D** and **E**. The molar ratio is **D** : **E** = 1 : 40.0 at 50.0 °C and **D** : **E** = 1 : 20.0 at 120.0 °C.

A.3 Calculate ΔH for the transformation of **D** to **E**. Assume that ΔH does not depend on temperature.

The isomerization from **C** to **D** and to **E** proceeds via transformations of π -bonds into σ -bonds without breaking any σ -bonds. A ¹³C NMR analysis revealed one signal for the Si₂C₄ skeleton of **D** and two signals for that of **E**. The skeleton of **D** does not contain any three-membered rings, while **E** has two three-membered rings that share an edge.

A.4 Draw the structural formulae of **D** and **E** using R¹, R², Si, and C.

10pt

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl₄ using Na₂SiF₆ was carried out as follows.

• Standardization of Na₂SiF₆ solution :

· Preparation

Aqueous solution **F**: 0.855 g of Na₂SiF₆ (188.053 g mol⁻¹) dissolved in water (total volume: 200 mL).

Aqueous solution **G**: 6.86 g of $Ce_2(SO_4)_3$ (568.424 g mol⁻¹) dissolved in water (total volume: 200 mL).

· Procedure

Precipitation titration of a solution **F** (50.0 mL) by dropwise adding solution **G** in the presence of xylenol orange, which coordinates to Ce^{3+} , as an indicator. After adding 18.8 mL of solution **G**, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce^{3+} , and the only resulting silicon compound is Si(OH)₄.

B.1 <u>Write</u> the balanced equation for the reaction of Na_2SiF_6 with $Ce_2(SO_4)_3$. 5p

5pt

• Reaction of CCl₄with Na₂SiF₆:

(Substance losses by e.g. evaporation are negligible during the following operations.)

Na₂SiF₆(*x* [g]) was added to CCl₄ (500.0 g) and heated to 300 °C in a sealed pressure-resistant reaction vessel. The unreacted Na₂SiF₆ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl₄ (solution **H**). The ²⁹Si and ¹⁹F NMR spectra of solution **H** showed SiF₄ as the only silicon compound. In the ¹⁹F NMR spectrum, in addition to SiF₄, signals corresponding to CFCl₃, CF₂Cl₂, CF₃Cl, and CF₄ were observed (*cf.* Table 1). The integration ratios in the ¹⁹F NMR spectrum are proportional to the number of fluorine nuclei.

¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integration ratio	45.0	65.0	18.0	2.0		

Table 1

 SiF_4 is hydrolyzed to form H_2SiF_6 according to the following eq. 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

Solution **H** (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H_2SiF_6 generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na_2SiF_6 (aqueous solution **J**).

The precipitate of unreacted Na_2SiF_6 and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution **K**; 10.0 L).

Then, additional precipitation titrations using solution **G** were carried out, and the endpoints of the titrations with **G** were as follows:

•For solution **J** (entire amount): 61.6 mL.

·For 100 mL of solution **K**: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

- **B.2** <u>**Calculate**</u> the mass of the NaCl produced in the reaction vessel (information 15pt underlined), and <u>**calculate**</u> the mass (x [g]) of the Na₂SiF₆ used as a starting material.
- **B.3** 77.8% of the CCl_4 used as a starting material was unreacted. <u>Calculate</u> the mass 8pt of CF_3Cl generated.

SWE-1 C-5 Q-1

Mystiskt kisel

12 % av totalpoängen								
Uppgift	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Totalt
Maxpoäng	9	7	6	10	5	15	8	60
Poäng								

Trots att grundämnena kisel och kol båda tillhör grupp 14 så är deras egenskaper väldigt olika.

Del A

Trippelbindningen mellan kisel-kisel i en förening kan skrivas R^1 -Si \equiv Si- R^1 (R: organisk substituent) och den är extremt reaktiv jämfört med motsvarande kol-kol-trippelbindning. Den kan exempelvis reagera med eten och bilda en cyklisk fyra-ringsprodukt.

När $R^1-Si \equiv Si-R^1$ blandas med en alkyn ($R^2-C \equiv C-R^2$), bildas en fyra-ringad förening **A** som första mellanprodukt. Fortsatt reaktion mellan ytterligare en molekyl $R^2-C \equiv C-R^2$ och **A** ger isomererna **B** och **C**, som båda har bensenliknande cykliska konjugerade sex-ringstrukturer, så kallade 'disilabenzenes' som kan skrivas $(R^1-Si)_2(R^2-C)_4$.

SWE-1 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

¹³C NMR-analys av det sex-ringade skelettet av Si_2C_4 ger två signaler för **B** och en signal för **C**.

A.1 <u>**Rita**</u> strukturformler för **A**, **B**, och **C** för någon av de möjliga resonansformlerna. 9pt Använd beteckningarna R¹, R², Si, och C.

A.2 Beräkna den aromatiska stabiliseringsenergin (ASE) för bensen och **C** (i det här 7pt fallet med $R^1 = R^2 = H$) med positiva värden, utifrån entalpiförändringar för några hydrogeneringsreaktioner av omättade system som visas nedan (figur 1).

När man upphettar **C** i lösningsmedlet xylen, isomeriseras **C** till en jämviktsblandning av föreningarna **D** och **E**. Följande molförhållanden erhålls, **D** : **E** = 1 : 40,0 vid 50,0 °C och **D** : **E** = 1 : 20,0 vid 120,0 °C.

A.3 <u>**Bestäm**</u> ΔH för omvandlingen av **D** till **E**. Antag att ΔH inte är temperaturbe- 6pt roende.

Isomeriseringen från **C** till **D** och **E** sker via omvandling av π -bindningar till σ -bindningar utan att några σ -bindningar bryts. En ¹³C NMR-analys visar en signal för Si₂C₄-skelettet av **D** och två signaler för det hos **E**. Skelettet av **D** innehåller inga tre-ringade strukturer medan **E** har två tre-ringar som delar en kant.

A.4 <u>Rita</u> strukturformler för **D** och **E.** Använd R¹, R², Si, och C.

10pt

Del B

Kisel kan bilda högkoordinerade föreningar (> fyra substituenter) med elektronegativa grundämnen som fluor. Eftersom metallfluorider ofta används som fluorreagens, kan även kiselfluorider med höga koordinationstal användas som fluorreagens.

Fluorineringsreaktionen av CCl₄ med Na₂SiF₆ genomfördes enligt följande.

• Standardisering av Na₂SiF₆ -lösning :

· Beredning

Vattenlösning **F**: 0,855 g Na₂SiF₆ (188,053 g mol⁻¹) löstes i vatten (totalvolym: 200 cm³).

Vattenlösning **G**: 6,86 g $Ce_2(SO_4)_3$ (568,424 g mol⁻¹) löstes i vatten (totalvolym: 200 cm³).

· Utförande

En fällningstitrering av lösning **F** (50,0 cm³) genomfördes genom att droppvis tillsätta lösning **G** i närvaro av xylenol orange, som indikator (som koordinerar till Ce³⁺). Efter tillsats av 18,8 cm³ av lösning **G**, ändrades lösningens färg från gul till magenta. Den bildade fällningen är en binär förening som innehåller Ce³⁺, och den enda bildade kiselföreningen är Si(OH)₄.

B.1 <u>Skriv</u> en balanserad rektionsformel för reaktionen mellan Na_2SiF_6 och 5pt $Ce_2(SO_4)_3$.

• Reaktionen mellan CCl₄och Na₂SiF₆:

(Substansförluster genom exempelvis avdunstning kan försummas i följande försök.)

 $Na_2SiF_6(x [g])$ tillsattes till CCl₄ (500,0 g) och upphettades till 300 °C i ett förslutet trycktåligt reaktionskärl. <u>Oreagerat</u> Na₂SiF₆ och bildat NaCl avlägsnades genom filtrering. Den filtrerade lösningen späddes till totalvolymen 1,00 dm³ med CCl₄ (lösning **H**). ²⁹Si och ¹⁹F NMR spektra av lösning **H** visade att SiF₄ är den enda kiselföreningen. I ¹⁹F NMR-spektrumet, observeras förutom toppen för SiF₄, också toppar som motsvarar CFCl₃, CF₂Cl₂, CF₃Cl, och CF₄ (*jfr.* Tabell 1). Integrationsförhållandena i ¹⁹F NMR-spektrumet är proportionella till antalet fluorkärnor.

¹⁹ F NMR-data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integrationsförhållande	45,0	65,0	18,0	2,0		

SiF₄ hydrolyseras och bildar H₂SiF₆ enligt följande reaktion, ekv. 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6$$
(8)

Lösning **H** (10 cm³) tillsattes i ett överskott av vatten, vilket resulterade i en fullständig hydrolys av SiF₄. Efter separation, neutraliserades bildad H_2SiF_6 (från hydrolysen i vattenlösningen) fullständigt till Na_2SiF_6 (vattenlösning **J**).

Den fällning av oreagerad Na₂SiF₆ och NaCl, som avlägsnats vid filtreringen i början (understruken), upplöstes fullständigt i vatten till en lösning (lösning **K**; 10,0 dm³).

Därefter genomfördes ytterligare fällningstitreringar med lösning **G** , och följande slutpunkter erhölls vid titreringen med **G**:

•För lösning **J** (hela mängden): 61,6 cm³.

·För 100 ml av lösning **K**: 44,4 cm³.

Det kan noteras att samexistens av NaCl eller SiO_2 inte har någon effekt på fällningstitreringen.

- **B.2** <u>**Bestäm**</u> den massa NaCl som bildats i reaktionskärlet (se understruken text 15pt ovan), och <u>**bestäm**</u> den massa (x [g]) Na₂SiF₆ som behövdes som utgångsämne.
- **B.3** 77,8 % av startmängden CCl_4 reagerade inte. **Beräkna** den massa CF_3Cl som 8pt bildats.

A5-1 Swedish (Sweden)

SWE-1 C-5 A-1

Mystiskt kisel

Del A

A.1 (9 pt)

A (3 pt)	B (3 pt)	C (3 pt)

A.2 (7 pt)

 $C_6H_6:$ kJ mol⁻¹, C : kJ mol⁻¹

A.3 (6 pt)			
$\Delta H =$	kJ mol ⁻¹		
A.4 (10 pt)			
	D (5 pt)	E (5 pt)	

Del B

B.1 (5 pt)

B.2 (15 pt)

(Fortsätter på nästa sida)

B.2 (cont.)		
NaCl :	g, Na ₂ SiF ₆ :	g

B.3 (8 pt)

 $CF_3CI:$ g

SWE-1 C-6 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

The Solid-State Chemistry of Transition Metals

13 % of the total											
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Total
Points	6	3	3	6	4	4	4	5	5	5	45
Score											

Volcano at Sakurajima island

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M^{n+}) in the magma is incorporated into the silicate minerals. The M^{n+} studied in the problem are coordinated by oxide ions (O^{2-}) and adopt a four-coordinate tetrahedral (T_d) geometry in the magma and six-coordinate octahedral (O_h) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M^{n+} between the silicate minerals and magma, D, can be expressed by:

$$D = \frac{[M]_s}{[M]_1}$$

where $[M]_s$ and $[M]_l$ are the concentrations of M^{n+} in the silicate minerals and the magma, respectively. The table below shows the D values of Cr^{2+} and Mn^{2+} as examples.

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

Let Δ_0 and CFSE^O be the energy separation of the d-orbitals of Mⁿ⁺ and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

- **A.1** <u>**Calculate**</u> $|CFSE^O CFSE^T| = \Delta CFSE$ in terms of Δ_O for Cr^{2+} , Mn^{2+} , and Co^{2+} ; 6pt assume $\Delta_T = 4/9\Delta_O$.
- A.2 A linear relationship is observed by plotting ln *D* against $\Delta CFSE / \Delta_0$ in the Carte- 3pt sian coordinate system shown below. Estimate *D* for Co²⁺. $\begin{array}{c}
 2.0 \\
 1.5 \\
 9 \\
 1.0 \\
 0.5 \\
 0 \\
 0.1 \\
 0.2 \\
 0.3 \\
 0.4 \\
 0.5 \\
 \end{array}$

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

 $\Delta CFSE / \Delta_{O}$

A.3 <u>**Choose**</u> the appropriate set of lattice enthalpies [kJ mol⁻¹] from one of the op- 3pt tions (a) to (f).

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878
(1)	2210	2210	2310	2.00	2270

Part B

A mixed oxide **A**, which contains La³⁺ and Cu²⁺, crystallizes in a tetragonal unit cell shown in Fig.1. In the [CuO₆] octahedron, the Cu–O length along the *z*-axis (l_z) is longer than that of the *x*-axis (l_x), and [CuO₆] is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals (d_{x²-y²} and d_{z²}).

Fig. 1

A can be synthesized by thermal decomposition (pyrolysis) of complex **B**, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of **B** in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO_2 . The total weight loss during the formation of **A** from **B** is 63.6%. It should be noted that only water and CO_2 are released in the pyrolysis reaction.

B.1	Write the chemical formulae for A and B .	6pt
B.2	<u>Calculate</u> l_x and l_z using Fig. 1.	4pt
B.3	For Cu^{2+} in the distorted $[CuO_6]$ octahedron in A of Fig. 1, <u>write</u> the names of the split e_g orbitals $(d_{x^2-y^2}$ and $d_{z^2})$ in (i) and (ii), and <u>draw</u> the electron configuration in the dotted box in your answer sheet.	4pt

A is an insulator. When one La³⁺ is substituted with one Sr²⁺, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr²⁺-doped **A** shows superconductivity below 38 K. When a substitution reaction took place for **A**, 2.05×10^{27} holes m⁻³ were generated.

B.4 Calculate the percentage of Sr²⁺ substituted for La³⁺ based on the mole ratio 4pt in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

 $Cu_2(CH_3CO_2)_4$ is composed of four $CH_3CO_2^-$ coordinated to two Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four $CH_3CO_2^$ and an axis passing through the two Cu^{2+} , all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of $CH_3CO_2^-$, a "cage complex" is formed. The cage complex $Cu_4(L1)_4$ is composed of planar dicarboxylate L1 (Fig. 2B) and Cu^{2+} (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L1. Note that hydrogen atoms are not shown in Fig. 2.

Fig. 2

C.1 The θ of the planar dicarboxylate **L2** below is fixed to 90°. If the composition of the cage complex formed from **L2** and Cu^{2+} is $\operatorname{Cu}_n(\operatorname{L2})_m$, **give** the smallest integer combination of *n* and *m*. Assume that only the CO_2^n groups of **L2** form a coordination bond to Cu^{2+} ions.

A zinc complex, $Zn_4O(CH_3CO_2)_6$, contains four tetrahedral Zn^{2+} , six $CH_3CO_2^{-}$, and one O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of $CH_3CO_2^{-}$ are oriented orthogonal relative to each other. When *p*-benzenedicarboxylate (Fig. 3B, **L3**, $\theta = 180^\circ$) is used instead of $CH_3CO_2^{-}$, the Zn^{2+} clusters are linked to each other to form a crystalline solid (**X**) that is called a "porous coordination polymer" (Fig. 3C). The composition of **X** is $[Zn_4O(L3)_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

- **C.2 X** has a cubic unit cell with a side length of *a* (Fig. 3C) and a density of 0.592 5pt $g \text{ cm}^{-3}$. **Calculate** *a* in [cm].
- **C.3 X** contains a considerable number of pores, and 1 g of **X** can accommodate 5pt 3.0×10^2 mL of CO₂ gas in the pores at 1 bar and 25 °C. <u>Calculate</u> the average number of CO₂ molecules per pore.

Fasta tillståndets kemi för övergångsmetaller

13 % av totalpoängen											
Uppgift	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Totalt
Maxpoäng	6	3	3	6	4	4	4	5	5	5	45
Poäng											

Vulkan på Sakurajima island

Del A

Japan är en av världens mest vulkantäta länder. När kiselmineraler (silikater) kristalliserar från magma inkorporeras joner av övergångsmetaller (M^{n+}) från magman in i kiselmineralerna. M^{n+} som studeras i denna uppgift är koordinerade med oxidjoner (O^{2-}) och antar en fyra-koordinerad tetraedisk (T_d) geometri i magman och en sex-koordinerad oktaedrisk (O_h) geometri i kiselmineralen, som båda har hög-spinn elektronkonfigurationer. Fördelningskoefficienten för M^{n+} mellan kiselmineral och magma, D, uttrycks som:

$$D = \frac{[M]_s}{[M]_1}$$

där $[M]_s$ och $[M]_l$ är koncentrationerna av M^{n+} i silikatmineralerna respektive magman. Tabellen nedan visar D-värden för för Cr^{2+} och Mn^{2+} , som exempel.

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

Låt Δ_0 vara energigapet mellan d-orbitalerna för M^{n+} och låtCFSE^O vara den totala energin för elektronerna i de ockuperade d-orbitalen (the crystal-field stabilization energy) i ett O_h -fält. Låt Δ_T och CFSE^T vara motsvarande i ett T_d -fält.

A.1 <u>**Beräkna**</u> | CFSE^O – CFSE^T | = Δ CFSE i termer av Δ_0 för Cr²⁺, Mn²⁺, och Co²⁺; 6pt Antag att Δ_T = 4/9 Δ_0 .

Metalloxider MO (M: Ca, Ti, V, Mn eller Co) kristalliserar med natriumkloridstruktur, varvid Mⁿ⁺ antar en O_h -geometri med en hög-spinn elektronkonfiguration. Gitterentalpin hos dessa oxider kommer huvud-sakligen från Coulomb-interaktioner som beror på radien och laddningen hos jonerna men även till viss del från CFSE av Mⁿ⁺ i O_h -fältet.

	CaO	TiO	VO	MnO	СоО
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Del B

En blandoxid **A**, som innehåller La³⁺ och Cu²⁺, kristalliserar med en tetragonal enhetscell som visas i figur 1. I oktaedern [CuO₆] är bindningslängden för Cu–O längs *z*-axeln (l_z) längre än i *x*-axelns (l_x) riktning. [CuO₆]-enheten är därför distorderad jämfört med den symmetriska O_h geometrin. Distorsionen gör så att energinivåerna för e_g orbitalen ($d_{x^2-y^2}$ and d_{z^2}) splittrar sig ytterligare och är därför inte längre degenererade.

Figur 1

A kan syntetiseras genom termisk sönderdelning (pyrolys) av komplex **B**. Komplexet **B** bildas genom att blanda metallklorider i utspädd vattenhaltig ammoniaklösning innehållande kvadrinsyra (squaric acid) $C_4H_2O_4$, dvs en disyra. Pyrolysen av **B** i torr luft ger en viktminskning på 29,1% upp till 200 °C på grund av förlusten av kristallvatten, följt av ytterligare en viktminskning upp till 700 °C på grund av frisättningen av CO_2 . Den totala viktminskningen under bildandet av **A** från **B** är 63,6%. Det bör noteras att endast vatten och CO_2 avges under pyrolysreaktionen.

B.1	Ange den kemiska formeln för A och B.	6pt
B.2	Beräkna l_x och l_z genom att använda figur 1.	4pt
B.3	Betrakta Cu ²⁺ i den distorderade oktaedern [CuO ₆] i A , se figur 1. Ange beteck- ningen (namnet) på splittrade orbitalerna $e_g(d_{x^2-y^2} \operatorname{och} d_{z^2})$ i (i) och (ii) och <u>rita</u> elektronkonfigurationen i den prickade rutan i din svarsblankett.	4pt

A är en isolator. När en La³⁺ ersätts med en Sr²⁺, genereras ett hål i kristallgittret som kan leda elektricitet. Som ett resultat visar det Sr²⁺-dopade **A** supraledande effekter under 38 K. När en substitutionsreaktion ägde rum för **A** bildades 2, 05 × 10²⁷ hål m⁻³.

B.4 <u>**Beräkna**</u> andelen i procent av Sr²⁺ som ersatt La³⁺ baserat på molförhållandet i 4pt substitutionsreaktionen. Observera att laddningarna hos de ingående jonerna eller kristallstrukturen inte förändras av substitutionsreaktionen.

Del C

 $Cu_2(CH_3CO_2)_4$ består av fyra $CH_3CO_2^-$ som koordinerats till två Cu^{2+} (Figur 2A). $Cu_2(CH_3CO_2)_4$ uppvisar höga nivåer av struktursymmetri, med två symmetriaxlar som passerar genom kolatomerna hos de fyra $CH_3CO_2^-$ och en symmetriaxel som passerar genom de två Cu^{2+} , som alla tre är ortogonalt orienterade i förhållande till varandra. När en dikarboxylat-ligand används istället för $CH_3CO_2^-$ bildas ett "bur-komplex". Burkomplexet $Cu_4(L1)_4$ består av den plana dikarboxylaten L1 (Figur 2B) och Cu^{2+} (Figur 2C). Vinkeln θ mellan pilarna i figur 2B, indikerar koordinationsriktningarna för de två karboxylaten och bestämmer strukturen för hela bur-komplexet. θ är 0° för L1. Observera att väteatomer inte visas i figur 2.

Figur 2

C.1 Vinkeln θ mellan karboxylaten i ändarna av den plana molekylen **L2** nedan, är fixerad till 90°. Sammansättningen hos bur-komplexet som bildas från **L2** och Cu²⁺ är Cu_n(**L2**)_m. **Ange** de minsta talen för *n* och *m* som är möjliga för komplexet. Antag att det endast är CO₂⁻ grupperna hos **L2** som bildar komplexbindningar med Cu²⁺ jonerna.

Ett zink-komplex, $Zn_4O(CH_3CO_2)_6$ innehåller fyra tetraediskt koordinerade Zn^{2+} , sex $CH_3CO_2^{-}$, och en O^{2-} (Figur 3A). I $Zn_4O(CH_3CO_2)_6$, ligger O^{2-} i centrum och de tre axlarna som passerar genom kolatomerna i $CH_3CO_2^{-}$ är ortogonala till varandra. När *p*-bensenedikarboxylat (Figur 3B, **L3**, θ = 180°) används istället för $CH_3CO_2^{-}$, är Zn^{2+} -klusterna länkade till varandra så att de bildar ett kristallint fast ämne (**X**) som kallas en "porös koordinationspolymer" (Figur 3C). Sammansättningen av **X** är $[Zn_4O(L3)_3]_n$, och den har en kubisk kristallstruktur med porer i nanostorlek. En por representeras som en sfär i figur 3D, och varje tetraediskt Zn^{2+} representeras som mörkgrå polyeder i figur 3C och 3D. Observera att väteatomer inte visas i figur 3.

- **C.2 X** har en kubisk enhetscell med kantlängden *a* (Figur 3C) och densiteten 0,592 5pt $g \text{ cm}^{-3}$. **Beräkna** *a* i [cm].
- **C.3 X** innehåller ett betydande antal porer, och 1 g av **X** kan innehålla upp till 5pt $3, 0 \cdot 10^2$ cm³ CO₂-gas i porerna vid 1 bar och 25 °C. **Beräkna** medelantalet CO₂-molekyler per por.

Fasta tillståndets kemi för övergångsmetallerna

Del A			
A.1 (6 pt)			
<u>Cr²⁺ :</u>	_Δ ₀ , <u>Mn²⁺ :</u>	_Δ ₀ , <u>Co²⁺ :</u>	Δ _O

Del B

B.1 (6 pt)		
<u>A</u> :	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B :</u>	
<u>A</u> : B.2 (4 pt)	, <u>B :</u>	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B :</u>	
<u>A</u> : B.2 (4 pt)	, <u>B :</u>	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	

Del C

C.1 (5 pt)	
<u>n</u> =	, <u>m =</u>

 $\textbf{C.2}~(5~\mathrm{pt})$

 $\underline{a} =$

cm

C.3 (5 pt)

SWE-1 C-7 C-1

SWE-1 C-7 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Playing with Non-benzenoid Aromaticity

13 % of the total					
Question	A.1	A.2	A.3	B.1	Total
Points	5	2	19	10	36
Score					

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Photo courtesy: Tohoku Univ.

Part A

Lineariifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields **2**, before a three-step conversion via **3** yields ketone **4**. Eremophilene (**5**) is converted into **6** by performing the same four-step conversion.

Inula linariifolia

A.1 Draw the structures of **2** and **6** and clearly identify the stereochemistry where 5pt necessary.

Then, ketone **4** is converted into ester **15**. Compound **8** (molecular weight: 188) retains all the stereocenters in **7**. Compounds **9** and **10** have five stereocenters and no carbon-carbon double bonds. Assume

that $H_2^{18}O$ is used instead of $H_2^{16}O$ for the synthesis of ¹⁸O-labelled-lineariifolianones **13** and **14** from **11** and **12**, respectively. Compounds **13** and **14** are ¹⁸O-labelled isotopomers. Ignoring isotopic labelling, both **13** and **14** provide the same product **15** with identical stereochemistry.

Part B

Compound **19** is synthesized as shown below. In relation to non-benzenoid aromaticity, **19** can be used as an activator for alcohols, and **20** was converted to **22** via ion-pair intermediate **21**. Although the formation of **21** was observed by NMR, **21** gradually decomposes to give **18** and **22**.

B.1 Draw the structures of **17–19** and **21**. Identifying the stereochemistry is not 10pt necessary.

Lek med icke-bensenoid aromaticitet

13 % av totalpoängen					
Uppgift	A.1	A.2	A.3	B.1	Totalt
Maxpoäng	5	2	19	10	36
Poäng					

Professor Nozoe (1902–1996) startade forskningsområdet för icke-bensenoida aromatiska föreningar, ämnen som nu är centrala inom organisk kemi.

Fotorättigheter: Universitetet i Tohoku

Del A

Lineariifolianone är en naturprodukt med unik struktur. Ämnet isolerades från *Inula linariifolia*. Från valencene (1), kan man i ett syntessteg bilda 2, innan en trestegsreaktion via 3 ger en keton 4. Eremophilene (5) omvandlas till 6 genom motsvarande reaktionsförlopp i fyra syntessteg.

SWE-1 C-7 Q-2

Inula linariifolia

A.1 <u>**Rita</u>** strukturformlerna för 2 och 6 och identifiera tydligt stereokemin där så 5pt krävs.</u>

Därefter omvandlas keton **4** till ester **15**. Förening **8** (molekylvikt: 188) behåller alla stereocentra i **7**. Föreningarna **9** och **10** har fem stereocenter och inga kol-kol-dubbelbindningar. Antag att $H_2^{18}O$ används

istället för H₂¹⁶O för att syntetisera ¹⁸O-märkta lineariifolianoner **13** och **14** från respektive **11** och **12**. Föreningarna **13** och **14** är ¹⁸O-märkta isotopomerer. Utan isotopmärkning ger både **13** och **14** samma produkt **15** med identisk stereokemi.

Del B

Förening **19** syntetiseras enligt reaktionsschemat nedan. I samband med icke-bensenoid aromaticitet kan **19** användas som en aktivator för alkoholer, och **20** omvandlades till **22** via mellanprodukten **21** som är ett jonpar. Även om bildningen av **21** kan observeras med NMR, kommer **21** gradvis att sönderdelas och ge **18** och **22**.

Lek med icke-bensenoid aromaticitet

Del A

.1 (5 pt)		
2 (2 pt)	6 (3 pt)	

A.2 (2 pt)

SWE-1 C-7 A-2

SWE-1 C-7 A-3

Del B

18 (2 pt)	
21 (3 pt)	
_	18 (2 pt) 21 (3 pt)

SWE-1 C-8 C-1

SWE-1 C-8 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Dynamic Organic Molecules and Their Chirality

11 % of the total						
Question	A.1	A.2	A.3	B.1	B.2	Total
Points	9	3	7	3	4	26
Score						

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, n represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.

Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

A.1 Draw the structures of A-C. Stereoisomers should be distinguished. 9pt
A.2 Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The ¹H NMR chemical shifts of D are listed below. Draw the structure of D. [D (δ, ppm in CS₂, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (*M*) or (*P*) as shown below.

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation

Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound **E** contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as (P, P, P) as shown below.

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of **F**, (*P*)-**F**, multiple helicene **G** ($C_{66}H_{36}$) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of **G** formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and *M* and *P* labels according to the same numbering. For instance, the other stereoisomers of **E** should be listed as (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*P*, *P*, *M*), (*M*, *M*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), and (*M*, *P*, *M*).

Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

propriate stereochemistry.

Dynamiska organiska molekyler och deras kiralitet

11 % av totalpoängen						
Uppgift	A.1	A.2	A.3	B.1	B.2	Totalt
Maxpoäng	9	3	7	3	4	26
Poäng						

Del A

Polycykliska aromatiska kolväten med på varandra följande orto-bindningar kallas [n]karbohelicener (där, n representerar antalet ringar bestående av sex kolatomer, se nedan). [4]Karbohelicene (**[4]C**) kan effektivt syntetiseras genom en syntesväg som använder en fotoreaktion som visas nedan, via en mellanprodukt (**Int.**) som lätt oxideras av jod.

Fotoreaktionen fortgår på ett sätt som liknar följande exempel.

Anmärkning: Under hela fråga 8, rita omväxlande enkel- och dubbelbindningar i dina svar på frågorna på samma sätt som det visas i exemplet med karbohelicene. Använd inte cirklar för konjugerade π -system.

A.1	<u>Rita</u> strukturformler för A–C . Visa strukturformlernas stereoisomeri.	9pt
A.2	Försök att syntetisera [5]karbohelicene från samma fosfoniumsalt och ett lämp- ligt startmaterial resulterade i bildningen av endast en spårmängd [5]karbohe- licene, men istället bildades produkten D vars molmassa var 2 Da lägre än den för [5]karbohelicene. De kemiska skiften i ¹ H NMR för D listas nedan. <u>Rita</u> struk- turformeln för D . [D (δ , ppm i CS ₂ , r.t.), 8,85 (2H), 8,23 (2H), 8,07 (2H), 8,01 (2H), 7,97 (2H), 7,91 (2H)]	3pt

[5]- och större [n]karbohelicener har spiralkiralitet och omvandlingen mellan de olika kiraliteterna är mycket långsam vid rumstemperatur. Kiraliteten för [n]karbohelicener defineras som (*M*) eller (*P*) på det sätt som visas nedan.

[n]Karbohelicenes med n större än 4 kan bli enantiomeriskt separerade med hjälp av kiral kolonnkromatografi. Metoden utvecklades av professor Yoshio Okamoto.

Foto med tillstånd från: The Japan Prize Foundation

Multi-helicener är molekyler som innehåller två eller fler helicenliknande (spiralliknande) strukturer. Om hänsyn tas till dess spiralkiralitet kan flera stereoisomerer finnas i en multi-helicen. Exempelvis förening **E** innehåller tre [5]karbohelicene-liknande strukturer i en molekyl. En av stereoisomererna, beskriven som (P, P, P), visas nedan.

A.3 Den nickel-medierade trimeriseringen av 1,2-dibromobensene genererar trifenylen. När samma reaktion genomförs på en enantiomer av **F**, (*P*)-**F**, erhålls multi-helicenen **G** ($C_{66}H_{36}$). Givet att omvandlingen mellan olika stereoisomerer inte sker under reaktionen, **identifiera alla** möjliga stereoisomerer av **G** som bildas under denna process, utan dubbletter. Som referens, ska en isomers fullständiga strukturformel ritas med kiraliteten väl definerad som i exemplet ovan till höger, med numeriska etiketter; De andra stereoisomererna ska listas med platsnummer samt *M* och *P* etiketter enligt samma numreringsprincip. Exempelvis, skulle de andra stereoisomererna av **E** kunna listas som (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*P*, *P*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), and (*M*, *P*, *M*).

Del B

Sumanene är ett skålformat kolväte som först upptäcktes i Japan år 2003. Namnet "sumanene" kommer från ett ord från Sanskrit-Hindi "suman" och betyder solros.

SWE-1 C-8 Q-4

Syntesen av sumanen lyckades med hjälp av en reaktionssekvens som bestod av en ringöppnande och en ringslutande metates.

Representativa metatesreaktioner katalyserade av en ruthenium katalysator (Ru*) visas nedan.

B.1 <u>Rita</u> strukturen för intermediären I (dess stereokemi behöver inte visas). 3pt

SWE-1 C-8 A-1

Dynamiska organiska molekyler och deras kiralitet

Del A

A.1 (9 pt)

B (3 pt)	C (3 pt)
	B (3 pt)

 $\textbf{A.2}~(3~\mathrm{pt})$

A.3 (7 pt)

SWE-1 C-8 A-2

SWE-1 C-8 A-3

Del B

B.1 (3 pt)

B.2~(4~pt)

SWE-1 C-9 C-1

SWE-1 C-9 C Erik Bryland

Please return this cover sheet together with all the related question sheets.

Likes and Dislikes of Capsule

10 % of the total						
Question	A.1	A.2	A.3	A.4	A.5	Total
Points	13	2	2	3	3	23
Score						

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds **1** and **2** were synthesized as U-shaped molecules with different sizes. Compound **3** was prepared as a comparison of **1** and the encapsulation behavior of these compounds was investigated.

The synthetic route to **2** is shown below. The elemental composition of compound **9**: C; 40.49%, H; 1.70%, and O; 17.98% by mass.

A.1 Draw the structures of **4–9**; the stereochemistry can be neglected. Use "PMB" 13pt as a substituent instead of drawing the whole structure of *p*-methoxybenzyl group shown in the scheme above.

In the mass spectrum of **1**, the ion peak corresponding to its dimer (1_2) was clearly observed, whereas an ion peak for 3_2 was not observed in the spectrum of **3**. In the ¹H NMR spectra of a solution of 1_2 , all the NH protons derived from **1** were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of **3**. These data indicate that hydrogen bonds are formed between the NH moieties of **1** and atoms **X** of another molecule of **1** to form the dimeric capsule.

A.2	<u>Circle</u> all the appropriate atom(s) X in 1 .	2pt
A.3	<u>Give</u> the number of the hydrogen bonds in the dimeric capsule (1 $_2$).	2pt

SWE-1 C-9 Q-4 English (Official)

The dimeric capsule of $\mathbf{1}$ ($\mathbf{1}_2$) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

The equilibrium constant of the encapsulation of Z into $\mathbf{1}_2$ is given as below:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z} \otimes \mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1_2 in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound **2** also forms a rigid and larger dimeric capsule (2_2). The ¹H NMR spectrum of 2_2 was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H^a proton of **2** in the above solvents are summarized below, and no other signals from the H^a in **2**, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

solvent	δ (ppm) of H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 Determine the number of C_6D_6 and C_6D_5F molecules encapsulated in 2_2 giving 3pt each H^a signal.

¹H NMR measurements in C_6D_6 revealed that 2_2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@ 2_2] denotes a species containing one or more solvent molecules.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Similarly, the K_a values of CH₄ and 1₂ given as eq (2) at various temperatures in C₆D₆ were also determined by ¹H NMR measurements. The plots of the two association constants (as ln K_a vs 1/*T*) are shown below.

No C_6D_6 molecule is encapsulated in 1_2 . In line **II**, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line **II** is (3). Therefore, line **I** corresponds to (4), and line **II** corresponds to (5).

A.5	<u>Choose</u> the correct options in gaps (1)–(5) in the following paragraph from A 3pt and B.						
		A	В				
	(1)	positive	negative				
	(2)	positive	negative				
	(3)	ΔS	ΔH				
	(4)	1_2 and CH_4	2_2 and AdA				
	(5)	1_2 and CH_4	2_2 and AdA				

Vad en kapsel gillar och inte

10 % av totalpoängen						
Uppgift	A.1	A.2	A.3	A.4	A.5	Totalt
Maxpoäng	13	2	2	3	3	23
Poäng						

Väluppfostrade barn gör inte sånt här, men om man klipper sönder en tennisboll kan man montera isär den till två U-formade delar.

Baserat på detta koncept, syntetiserades förening **1** och **2** som U-formade molekyler av olika storlekar. Förening **3** förbereddes som en jämförelse till **1** och inkapslingsbeteenden för dessa ämnen undersöktes.

Syntesvägen för förening **2** visas nedan. Den elementära sammansättningen av förening **9** är: C; 40,49%, H; 1,70%, och O; 17,98% i massprocent.

A.1 <u>**Rita**</u> strukturformeln för **4–9**; ingen hänsyn behöver tas till stereokemin. Använd "PMB" som substituent istället för att rita hela *p*-methoxybenzylgruppens struktur, som ses i reaktionsschemat ovan.

I masspektrumet för **1**, observerades tydligt toppen som motsvara jonen av dimeren ($\mathbf{1}_2$), däremot observerades inte jontoppen för $\mathbf{3}_2$ i **3**:s spektrum. I ett ¹H NMR-spektrum av en lösning av $\mathbf{1}_2$, visade det sig att alla NH protoner som härstammade från **1** var kemiskt ekvivalenta, och att deras kemiska skift var tydligt annorlunda från skiftet för NH protonerna i **3**. Denna data indikerar att vätebindningar bildas mellan NH grupperna i **1** och atomerna **X** i en annan molekyl av **1** för att bilda den dimeriska kapseln.

A.2	Ringa in samtliga X atom(er) i förening 1.	2pt
A.3	Ange antalet vätebindningar i den dimeriska kapseln (1_{\circ}) .	2pt
7		200

Den dimeriska kapseln av **1** ($\mathbf{1}_2$) har ett inre utrymme där en lämplig liten molekyl Z kan kapslas in. Detta fenomen beskrivs av följande ekvation:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z}@\mathbf{1}_2 \tag{1}$$

Jämnviktskonstanten för inkapslingen av Z i $\mathbf{1}_2$ är given nedan:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Inkapslingen av en molekyl i kapseln kunde undersökas med NMR-spektroskopi. Exempelvis, 1_2 i C₆D₆ gav olika signaler i ¹H NMR-spektrumet innan och efter additionen av CH₄.

Förening **2** bildar också en rigid och dimerisk kapsel (2_2). ¹H NMR-spektra av 2_2 uppmättes i C₆D₆, i C₆D₅F, samt i en blandning av C₆D₆/C₆D₅F, där alla andra parametrar hölls konstanta. De kemiska skiftet för H^a protonen i **2** i de ovan nämnda lösningsmedlen summeras nedan, och inga andra signaler från H^a observerades i **2**, utöver de som är listade nedan. Antag att insidan av kapseln alltid är fylld med det maximala antalet lösningsmedelsmolekyler och att varje signal motsvarar en sorts fylld kapsel.

lösningsmedel	δ (ppm) för H ^a
C ₆ D ₆	4,60
C ₆ D ₅ F	4,71
C ₆ D ₆ / C ₆ D ₅ F	4,60, 4,71, 4,82

A.4 <u>**Bestäm**</u> antalet molekyler av C_6D_6 och C_6D_5F inkapslade i 2_2 som ger upphov 3pt till de olika H^a signalerna.

¹H NMR-mätningar i C₆D₆ visade att 2_2 kan innesluta en molekyl av 1-adamantanesyra (AdA), och associationskonstanten (K_a), vilken ses nedan, fastställdes för flera temperaturer.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

På samma sätt användes ${}^{1}H$ NMR, för att fastställa K_{a} -värdet för CH₄ och 1₂, vid olika temperaturer i C₆D₆, se ekvation (2). Grafen för de två associationskonstanterna (ln K_{a} som funktion av 1/*T*) visas nedan.

Inga C₆D₆-molekyler inkapslas i 1₂. I linje **II**, är entropiändringen (ΔS) (1) och entalpiändringen (ΔH) är (2), vilket indikerar att drivkraften för inkapslingen i linje **II** är (3). Detta betyder att, linje **I** motsvarar (4), och att linje **II** motsvarar (5).

	A	В	
(1)	positiv	negativ	
(2)	positiv	negativ	
(3)	ΔS	ΔH	
(4)	1_2 ochCH ₄	2_2 och AdA	
(5)	1_2 och CH_4	2_2 och AdA	

SWE-1 C-9 A-1

Vad en kapsel gillar och inte

A.1 (13 pt)					
	4 (2 pt)	5 (3 pt)			
	6 (2 pt)	7 (2 pt)			
	0 (2 m)				
	8 (2 pt)	9 (2 pt)			

SWE-1 C-9 A-2

A.2 (2 pt)

A.3 (2 pt)

$\textbf{A.4}~(3~\mathrm{pt})$

δ (ppm) för H ^a	antalet C ₆ D ₆	antalet C ₆ D ₅ F
4,60 ppm		
4,71 ppm		
4,82 ppm		

A.5 (3 pt)

(1):	(2):	(3) :

<u>(4)</u>: (5):