General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has 9 problems.
- You can solve the problems in any order.
- You will have 5 hours to solve all problems.
- You can begin working only after the START command is given.
- All results must be written in the appropriate answer boxes with pen on the answer sheets. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a 30-minute warning before the STOP command.
- You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

<table>
<thead>
<tr>
<th>Title</th>
<th>Total Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrogen at a Metal Surface</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2 Isotope Time Capsule</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3 Lambert–Beer Law?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4 The Redox Chemistry of Zinc</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5 Mysterious Silicon</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6 The Solid-State Chemistry of Transition Metals</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7 Playing with Non-benzenoid Aromaticity</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8 Dynamic Organic Molecules and Their Chirality</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9 Likes and Dislikes of Capsules</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Physical Constants and Equations

Constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>$c = 2.99792458 \times 10^8$ m s$^{-1}$</td>
</tr>
<tr>
<td>Planck constant</td>
<td>$h = 6.62607015 \times 10^{-34}$ J s</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>$e = 1.602176634 \times 10^{-19}$ C</td>
</tr>
<tr>
<td>Electron mass</td>
<td>$m_e = 9.10938370 \times 10^{-31}$ kg</td>
</tr>
<tr>
<td>Electric constant (permittivity of vacuum)</td>
<td>$\varepsilon_0 = 8.85418781 \times 10^{-12}$ F m$^{-1}$</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td>$N_A = 6.02214076 \times 10^{23}$ mol$^{-1}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>$k_B = 1.380649 \times 10^{-23}$ J K$^{-1}$</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>$F = N_A \times e = 9.6485332123100184 \times 10^4$ C mol$^{-1}$</td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = N_A \times k_B = 8.31446261815324$ J K$^{-1}$ mol$^{-1}$</td>
</tr>
<tr>
<td>Unified atomic mass unit</td>
<td>$u = 1$ Da $= 1.66053907 \times 10^{-27}$ kg</td>
</tr>
<tr>
<td>Standard pressure</td>
<td>$p = 1$ bar $= 10^5$ Pa</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>$p_{atm} = 1.01325 \times 10^5$ Pa</td>
</tr>
<tr>
<td>Zero degree Celsius</td>
<td>0 °C $= 273.15$ K</td>
</tr>
<tr>
<td>Ångstrom</td>
<td>1 Å $= 10^{-10}$ m</td>
</tr>
<tr>
<td>Picometer</td>
<td>1 pm $= 10^{-12}$ m</td>
</tr>
<tr>
<td>Electronvolt</td>
<td>1 eV $= 1.602176634 \times 10^{-19}$ J</td>
</tr>
<tr>
<td>Part-per-million</td>
<td>1 ppm $= 10^{-6}$</td>
</tr>
<tr>
<td>Part-per-billion</td>
<td>1 ppb $= 10^{-9}$</td>
</tr>
<tr>
<td>Part-per-trillion</td>
<td>1 ppt $= 10^{-12}$</td>
</tr>
<tr>
<td>pi</td>
<td>$\pi = 3.141592653589793$</td>
</tr>
<tr>
<td>The base of the natural logarithm (Euler’s number)</td>
<td>$e = 2.718281828459045$</td>
</tr>
</tbody>
</table>
Equations

The ideal gas law
\[PV = nRT \]
where \(P \) is the pressure, \(V \) is the volume, \(n \) is the amount of substance, and \(T \) is the absolute temperature of ideal gas.

Coulomb's law
\[F = \frac{k_e q_1 q_2}{r^2} \]
where \(F \) is the electrostatic force, \(k_e (\approx 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2}) \) is Coulomb's constant, \(q_1 \) and \(q_2 \) are the magnitudes of the charges, and \(r \) is the distance between the charges.

The first law of thermodynamics
\[\Delta U = q + w \]
where \(\Delta U \) is the change in the internal energy, \(q \) is the heat supplied, and \(w \) is the work done.

Enthalpy
\[H = U + PV \]

Entropy based on Boltzmann's principle
\[S = k_B \ln W \]
where \(W \) is the number of microstates.

The change of entropy
\[\Delta S = \frac{\Delta_q \text{rev}}{T} \]
where \(\Delta_q \text{rev} \) is the heat for the reversible process.

Gibbs free energy
\[G = H - TS \]
\[\Delta_r G^\circ = -RT \ln K = -zFE^\circ \]
where \(K \) is the equilibrium constant, \(z \) is the number of electrons, \(E^\circ \) is the standard electrode potential.

Reaction quotient
For a reaction
\[aA + bB \rightarrow cC + dD \]
\[Q = \frac{[C]^c [D]^d}{[A]^a [B]^b} \]
where \([A]\) is the concentration of A.
<table>
<thead>
<tr>
<th>Heat change Δq</th>
<th>$\Delta q = n c_m \Delta T$</th>
<th>where c_m is the temperature-independent molar heat capacity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nernst equation for redox reaction</td>
<td>$E = E^\circ + \frac{RT}{zF} \ln \frac{C_{ox}}{C_{red}}$</td>
<td>where C_{ox} is the concentration of oxidized substance, C_{red} is the concentration of reduced substance.</td>
</tr>
<tr>
<td>Arrhenius equation</td>
<td>$k = A \exp\left(-\frac{E_a}{RT}\right)$</td>
<td>where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy.</td>
</tr>
<tr>
<td>Lambert–Beer equation</td>
<td>$A = \varepsilon l c$</td>
<td>where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.</td>
</tr>
<tr>
<td>Henderson–Hasselbalch equation</td>
<td>For an equilibrium $\text{HA} \leftrightarrow \text{H}^+ + \text{A}^-$</td>
<td>where equilibrium constant is K_a, $\text{pH} = pK_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right)$</td>
</tr>
<tr>
<td>Energy of a photon</td>
<td>$E = h \nu = \frac{h \lambda}{\nu}$</td>
<td>where ν is the frequency, λ is the wavelength of the light.</td>
</tr>
<tr>
<td>The sum of a geometric series</td>
<td>When $x \neq 1$, $1 + x + x^2 + \cdots + x^n = \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$</td>
<td></td>
</tr>
<tr>
<td>Approximation equation that can be used to solve problems</td>
<td>When $x \ll 1$, $\frac{1}{1-x} \approx 1 + x$</td>
<td></td>
</tr>
</tbody>
</table>
1H NMR Chemical Shifts

$\Delta \delta$ for one alkyl group-substitution: ca. +0.4 ppm
Hydrogen at a Metal Surface

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, \(\text{H}_2(g) \rightarrow 2\text{H(ad)} \), where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H\(_2\)) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H\(_2\) is represented by two variables: the interatomic distance, \(d \), and the height relative to the surface metal atom, \(z \). It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of kJ per mole of H\(_2\). The solid line spacing is 20 kJ mol\(^{-1}\), the dashed line spacing is 100 kJ mol\(^{-1}\), and the spacing between solid and dashed lines is 80 kJ mol\(^{-1}\). The zero-point vibration energy is ignored.
Fig. 1 Definition of variables. Drawing is not in scale.

Fig. 2
A. For each of the following items (i)–(iii), select the closest value from A–G. 6pt
(i) The interatomic distance for a gaseous H₂ molecule
(ii) The interatomic distance between metal atoms (d_M in Fig. 1)
(iii) The distance of adsorbed H atoms from the surface (h_ad in Fig. 1)

| A. 0.03 nm | B. 0.07 nm | C. 0.11 nm | D. 0.15 nm |
| E. 0.19 nm | F. 0.23 nm | G. 0.27 nm |

B. For each of the following items (i)–(ii), select the closest value from A–H. 4pt
(i) The energy required for the dissociation of gaseous H₂ to gaseous H
[H₂(g) → 2H(g)]
(ii) The energy released during the adsorption of a gaseous H₂ [H₂(g) → 2H(ad)]

| A. 20 kJ mol⁻¹ | B. 40 kJ mol⁻¹ | C. 60 kJ mol⁻¹ | D. 100 kJ mol⁻¹ |
| E. 150 kJ mol⁻¹ | F. 200 kJ mol⁻¹ | G. 300 kJ mol⁻¹ | H. 400 kJ mol⁻¹ |
Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

\[
\text{H}_2(g) \xrightarrow{k_1} \text{H}_2(\text{ad}) \quad \text{(1a)} \\
\text{H(}\text{ad}) \xrightarrow{k_3} \text{H(ab)} \quad \text{(1b)}
\]

The reaction rates per surface site for adsorption, desorption, and absorption are \(r_1 [s^{-1}] \), \(r_2 [s^{-1}] \) and \(r_3 [s^{-1}] \), respectively. They are expressed as:

\[
\begin{align*}
 r_1 &= k_1 P_{H_2} (1 - \theta)^2 \\
 r_2 &= k_2 \theta^2 \\
 r_3 &= k_3 \theta
\end{align*}
\]

where \(k_1 [s^{-1} \text{ Pa}^{-1}] \), \(k_2 [s^{-1}] \) and \(k_3 [s^{-1}] \) are the reaction rate constants and \(P_{H_2} \) is the pressure of \(H_2 \).

Among the sites available on the surface, \(\theta (0 \leq \theta \leq 1) \) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption \((r_1, r_2 \gg r_3) \) and that \(\theta \) remains constant.

\[r_3 \text{ can be expressed as:} \]

\[
r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2} C}}}
\]

Express \(C \) using \(k_1 \) and \(k_2 \).
A metal sample with a surface area of $S = 1.0 \times 10^{-3} \text{ m}^2$ was placed in a container (1L = $1.0 \times 10^{-3} \text{ m}^3$) with H_2 ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. The surface temperature was kept at $T = 400 \text{ K}$. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$. Assume that H_2 is an ideal gas and that the volume of the metal sample is negligible.

B.2 Calculate the amount of H atoms in moles absorbed per unit area of the surface per unit time, $A \text{ [mol s}^{-1} \text{ m}^{-2}]$. 3pt

B.3 At $T = 400 \text{ K}$, C equals $1.0 \times 10^2 \text{ Pa}^{-1}$. Calculate the value of k_3 at 400 K. If you did not obtain the answer to B.2, use $A = 3.6 \times 10^{-7} \text{ mol s}^{-1} \text{ m}^{-2}$. 3pt

B.4 At a different T, $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ and $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$ are given. For r_3 as a function of P_{H_2} at this temperature, select the correct plot from (a)–(h). 3pt
Molecular entities that differ only in isotopic composition, such as CH\textsubscript{4} and CH\textsubscript{3}D, are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

\[^{12}\text{C}^{16}\text{O}_{2} + ^{12}\text{C}^{18}\text{O}_{2} \rightleftharpoons 2^{12}\text{C}^{16}\text{O}^{18}\text{O} \]

\[K = \frac{[^{12}\text{C}^{16}\text{O}^{18}\text{O}]^{2}}{[^{12}\text{C}^{16}\text{O}_{2}][^{12}\text{C}^{18}\text{O}_{2}]} \]

(1)

The entropy, \(S \), increases with increasing the number of possible microscopic states of a system, \(W \):

\[S = k_{B} \ln W \]

(2)

\(W = 1 \) for \(^{12}\text{C}^{16}\text{O}_{2} \) and \(^{12}\text{C}^{18}\text{O}_{2} \). In contrast, \(W = 2 \) for a \(^{12}\text{C}^{16}\text{O}^{18}\text{O} \) molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two \(^{12}\text{C}^{16}\text{O}^{18}\text{O} \) molecules, \(W = 2^{2} = 4 \).
A.1 The enthalpy change, ΔH, of eq. 3 is positive regardless of the temperature.

\[H_2 + DI \rightleftharpoons HD + HI \quad (3) \]

\textbf{Calculate} the equilibrium constants, K, for eq. 3 at very low (think of $T \to 0$) and very high (think of $T \to +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

\[2HD \rightleftharpoons H_2 + D_2 \quad K = \frac{[H_2][D_2]}{[HD]^2} \quad (4) \]

At $T = 0$ K, the vibrational energy of a diatomic molecule whose vibration frequency is $\nu \text{ [s}^{-1}\text{]}$ is expressed as:

\[E = \frac{1}{2} h \nu \quad (5) \]

\[\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \quad (6) \]

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2, according to:

\[\mu = \frac{m_1 m_2}{m_1 + m_2} \quad (7) \]

A.2 The vibration of H_2 is at 4161.0 cm$^{-1}$ when reported as a wavenumber.

\textbf{Calculate} the ΔH of the following equation at $T = 0$ K in units of J mol$^{-1}$.

\[2HD \rightarrow H_2 + D_2 \quad (8) \]

Assume that:

- only the vibrational energy contributes to the ΔH.
- the k values for H_2, HD, and D$_2$ are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.
The molar ratio of H_2, HD, and D_2 depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D_2.

$$\Delta_{D_2} = \frac{R_{D_2}}{R^{*}_{D_2}} - 1 \quad (9)$$

Here, R_{D_2} refers to $\frac{[\text{D}_2]}{[\text{H}_2]}$ in the sample and $R^{*}_{D_2}$ to $\frac{[\text{D}_2]}{[\text{H}_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 **Calculate** Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.
In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO\textsubscript{2} molecules with molecular weights of 44 and 47, which are described as CO\textsubscript{2}[44] and CO\textsubscript{2}[47] below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1$$

R_{47} refers to $[\text{CO}_2[47]]$ in the sample and R_{47}^* to $[\text{CO}_2[47]]$ at $T \rightarrow +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

<table>
<thead>
<tr>
<th></th>
<th>^{12}C</th>
<th>^{13}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>^{16}O</th>
<th>^{17}O</th>
<th>^{18}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4}$$

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5}. Estimate the temperature using this R_{47}. This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of CO\textsubscript{2}[47] for the calculation.
Lambert–Beer Law?

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution X was prepared using HA and NaA. The concentrations \([A^-]\), \([HA]\), and \([H^+]\) in solution X are \(1.00 \times 10^{-2} \text{ mol L}^{-1}\), \(1.00 \times 10^{-3} \text{ mol L}^{-1}\), and \(1.00 \times 10^{-4} \text{ mol L}^{-1}\), respectively, which are correlated via the following acid-base equilibrium:

\[
HA \rightleftharpoons A^- + H^+ \quad \text{with} \quad \mathcal{K} = \frac{[A^-][H^+]}{[HA]} \quad (1)
\]

The optical path length is \(l\) in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1

The absorbance of X was \(A_1\) at a wavelength of \(\lambda_1\). Then, solution X was diluted to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still \(A_1\) at \(\lambda_1\). **Determine** the ratio \(\varepsilon_{HA}/\varepsilon_{A^-}\), where \(\varepsilon_{HA}\) and \(\varepsilon_{A^-}\) represent the absorption coefficients of HA and of \(A^-\), respectively, at \(\lambda_1\).
Part B

Let us consider the following equilibrium in the gas phase.

\[\text{D} \rightleftharpoons 2\text{M} \quad (2) \]

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of \(S \) (see the figure below) at a pressure \(P \), and equilibrium is established while the total pressure is kept at \(P \). The absorbance of the gas is \(A = \varepsilon (n/V)l \), where \(\varepsilon \), \(n \), \(V \), and \(l \) are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

<table>
<thead>
<tr>
<th></th>
<th>Initial state</th>
<th>After equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>Partial pressure</td>
<td>(P)</td>
<td>0</td>
</tr>
<tr>
<td>Amount in moles</td>
<td>(n_0)</td>
<td>0</td>
</tr>
<tr>
<td>Volume</td>
<td>(V_0)</td>
<td>(V)</td>
</tr>
</tbody>
</table>

B.1 The absorbance of the gas at \(\lambda_{B1} \) measured from direction \(x \) (\(l = l_x \)) was \(A_{B1} \) both at the initial state and after the equilibrium. **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B1} \), where \(\varepsilon_D \) and \(\varepsilon_M \) represent the absorption coefficients of D and of M, respectively.

B.2 The absorbance of the gas at \(\lambda_{B2} \) measured from direction \(y \) was \(A_{B2} \) both at the initial state (\(l = l_y \)) and after the equilibrium (\(l = l_y \)). **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B2} \).
Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide Zn(OH)$_2$(s) at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

$$
\text{Zn(OH)}_2(\text{s}) \rightleftharpoons \text{Zn}^{2+}(\text{aq}) + 2\text{OH}^-(\text{aq}) \quad K_{sp} = 1.74 \times 10^{-17} \quad (1)
$$

$$
\text{Zn(OH)}_2(\text{s}) \rightleftharpoons \text{Zn(OH)}_2(\text{aq}) \quad K_1 = 2.62 \times 10^{-6} \quad (2)
$$

$$
\text{Zn(OH)}_2(\text{s}) + 2\text{OH}^-(\text{aq}) \rightleftharpoons \text{Zn(OH)}_2^2^-(\text{aq}) \quad K_2 = 6.47 \times 10^{-2} \quad (3)
$$

$$
\text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{H}^+(\text{aq}) + \text{OH}^-(\text{aq}) \quad K_w = 1.00 \times 10^{-14} \quad (4)
$$
The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [\text{Zn}^2+ (\text{aq})] + [\text{Zn(OH)}_2 (\text{aq})] + [\text{Zn(OH)}_4^{2-} (\text{aq})]$$

(A.1) When the equilibria in eq. 1–4 are established, **calculate** the pH range in which $[\text{Zn(OH)}_2 (\text{aq})]$ is the greatest among $[\text{Zn}^2+ (\text{aq})]$, $[\text{Zn(OH)}_2 (\text{aq})]$ and $[\text{Zn(OH)}_4^{2-} (\text{aq})]$.

(A.2) A saturated aqueous solution of $\text{Zn(OH)}_2 (s)$ with pH = 7.00 was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. **Calculate** the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$\text{Zn(OH)}_2 (s) \rightarrow \text{ZnO} (s) + \text{H}_2\text{O}(l)$$

(B.1) In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. **Calculate** the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{\text{ZnO}} (300 ^\circ \text{C}) = -2.90 \times 10^2 \text{kJ mol}^{-1}$ and $\Delta G_{\text{H}_2\text{O}} (300 ^\circ \text{C}) = -2.20 \times 10^2 \text{kJ mol}^{-1}$, respectively.

(B.2) A zinc-air battery was discharged at 20 mA for 24 hours. **Calculate** the change in mass of the negative electrode (anode) of the battery.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E°.

$$\text{Zn}(s) + \frac{1}{2}\text{O}_2(\text{g}) \rightarrow \text{ZnO}(s) \quad E^\circ = 1.65 \text{V}$$

(B.2) A zinc-air battery was discharged at 20 mA for 24 hours. **Calculate** the change in mass of the negative electrode (anode) of the battery.
Consider the change of e.m.f. of a zinc–air battery depending on the environment. **Calculate** the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are $-38 \, ^\circ C$ (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P \text{[bar]} = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \quad (9)$$

at altitude $h \text{[m]}$ and temperature $T \text{[^\circ C]}$. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{\text{ZnO}}(-38 \, ^\circ C) = -3.26 \times 10^2 \text{ kJ mol}^{-1}$ at $-38 \, ^\circ C$ and 1 bar.

B.4 **Calculate** the Gibbs energy change for reaction (6) at 25 $^\circ C$. Note that the standard reduction potentials, $E^\circ(\text{Zn}^{2+}/\text{Zn})$ and $E^\circ(\text{O}_2/\text{H}_2\text{O})$ at 25 $^\circ C$ and 1 bar are given as (10) and (11), respectively.

$$\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \quad \quad E^\circ(\text{Zn}^{2+}/\text{Zn}) = -0.77 \text{ V} \quad (10)$$

$$\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \quad \quad E^\circ(\text{O}_2/\text{H}_2\text{O}) = 1.23 \text{ V} \quad (11)$$
Mysterious Silicon

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as \(R^1\text{–Si} \equiv \text{Si} \equiv R^1 \) (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

\[
R^1\text{–Si} \equiv \text{Si} \equiv R^1 + H_2C=\text{CH}_2 \rightarrow \begin{array}{c} \text{Si} \equiv \text{Si} \\ R^1 \end{array} \begin{array}{c} \text{Si} \equiv \text{Si} \\ R^1 \end{array}
\]

When \(R^1\text{–Si} \equiv \text{Si} \equiv R^1 \) is treated with an alkyne (\(R^2\text{–C} \equiv \text{C} \equiv R^2 \)), the four-membered-ring compound A is formed as an initial intermediate. Further reaction of another molecule of \(R^2\text{–C} \equiv \text{C} \equiv R^2 \) with A affords isomers B and C, both of which have benzene-like cyclic conjugated structures, so-called 'disilabzenes' that contain a six-membered ring and can be formulated as \((R^1\text{–Si})_2(R^2\text{–C})_4\).
The 13C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for B and one signal for C.

A.1 Draw the structural formulae of A, B, and C using R^1, R^2, Si, and C, with one of the possible resonance structures.

A.2 Calculate the aromatic stabilization energy (ASE) for benzene and C (in the case of $R^1 = R^2 = H$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

\[
\begin{align*}
H_2C\equiv CH_2 + H_2 & \rightarrow H_3C\equiv CH_3 \quad \Delta H = -135 \text{ kJ mol}^{-1} \\
H_2Si\equiv CH_2 + H_2 & \rightarrow H_3Si\equiv CH_3 \quad \Delta H = -213 \text{ kJ mol}^{-1} \\
H_2Si\equiv SiH_2 + H_2 & \rightarrow H_3Si\equiv SiH_3 \quad \Delta H = -206 \text{ kJ mol}^{-1} \\
H_2C & + 3 H_2 \rightarrow \text{ benzene} \quad \Delta H = -173 \text{ kJ mol}^{-1} \\
HSi\equiv SiH + 3 H_2 & \rightarrow H_2Si\equiv SiH_2 \quad \Delta H = -326 \text{ kJ mol}^{-1} \\
HSi & + 3 H_2 \rightarrow H_2Si\equiv SiH_2 \quad \Delta H = -368 \text{ kJ mol}^{-1} \\
HSi\equiv SiH + 3 H_2 & \rightarrow H_2Si\equiv SiH_2 \quad \Delta H = -389 \text{ kJ mol}^{-1}
\end{align*}
\]

Fig. 1
When a xylene solution of C is heated, it undergoes isomerization to give an equilibrium mixture of compounds D and E. The molar ratio is $D : E = 1 : 40.0$ at 50.0 °C and $D : E = 1 : 20.0$ at 120.0 °C.

A.3 Calculate ΔH for the transformation of D to E. Assume that ΔH does not depend on temperature.

The isomerization from C to D and to E proceeds via transformations of π-bonds into σ-bonds without breaking any σ-bonds. A 13C NMR analysis revealed one signal for the Si$_2$C$_4$ skeleton of D and two signals for that of E. The skeleton of D does not contain any three-membered rings, while E has two three-membered rings that share an edge.

A.4 Draw the structural formulae of D and E using R^1, R^2, Si, and C.

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl$_4$ using Na$_2$SiF$_6$ was carried out as follows.

- **Standardization of Na$_2$SiF$_6$ solution**
 - Preparation
 Aqueous solution F: 0.855 g of Na$_2$SiF$_6$ (188.053 g mol$^{-1}$) dissolved in water (total volume: 200 mL).
 Aqueous solution G: 6.86 g of Ce$_2$(SO$_4$)$_3$ (568.424 g mol$^{-1}$) dissolved in water (total volume: 200 mL).
 - Procedure
 Precipitation titration of a solution F (50.0 mL) by dropwise adding solution G in the presence of xylene orange, which coordinates to Ce$^{3+}$, as an indicator. After adding 18.8 mL of solution G, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce$^{3+}$, and the only resulting silicon compound is Si(OH)$_4$.

- **Reaction of CCl$_4$ with Na$_2$SiF$_6$**
 (Substance losses by e.g. evaporation are negligible during the following operations.)
 Na$_2$SiF$_6$(x [g]) was added to CCl$_4$ (500.0 g) and heated to 300 °C in a sealed pressure-resistant reaction vessel. The unreacted Na$_2$SiF$_6$ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl$_4$ (solution H). The 29Si and 19F NMR spectra of solution H showed SiF$_4$ as the only silicon compound. In the 19F NMR spectrum, in addition to SiF$_4$, signals corresponding to CFCl$_3$, CF$_2$Cl$_2$, CF$_3$Cl, and CF$_4$ were observed (cf. Table 1). The integration ratios in the 19F NMR spectrum are proportional to the number of fluorine nuclei.

<table>
<thead>
<tr>
<th>19F NMR data</th>
<th>CFCl$_3$</th>
<th>CF$_2$Cl$_2$</th>
<th>CF$_3$Cl</th>
<th>CF$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration ratio</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

\[3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6 \] (8)

Solution H (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H₂SiF₆ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na₂SiF₆ (aqueous solution J).

The precipitate of unreacted Na₂SiF₆ and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution K; 10.0 L).

Then, additional precipitation titrations using solution G were carried out, and the endpoints of the titrations with G were as follows:
- For solution J (entire amount): 61.6 mL.
- For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

| B.2 | Calculate the mass of the NaCl produced in the reaction vessel (information underlined), and calculate the mass \((x \text{ g})\) of the Na₂SiF₆ used as a starting material. |
| B.3 | 77.8% of the CCl₄ used as a starting material was unreacted. Calculate the mass of CF₃Cl generated. |
Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M
+n+
) in the magma is incorporated into the silicate minerals. The M
+n+
studied in the problem are coordinated by oxide ions (O
2−
) and adopt a four-coordinate tetrahedral (T
4d
) geometry in the magma and six-coordinate octahedral (O
6h
) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M
+n+
between the silicate minerals and magma, D, can be expressed by:

\[
D = \frac{[M]_s}{[M]_l}
\]

where [M]_s and [M]_l are the concentrations of M
+n+
in the silicate minerals and the magma, respectively. The table below shows the D values of Cr
2+ and Mn
2+ as examples.

| | Cr
2+ | Mn
2+ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>7.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Let Δ_O and $CFSE^O$ be the energy separation of the d-orbitals of M^{n+} and the crystal-field stabilization energy in an O_h field, respectively. Let Δ_T and $CFSE^T$ be those in a T_d field.

A.1 Calculate $|CFSE^O - CFSE^T| = \Delta CFSE$ in terms of Δ_O for Cr^{2+}, Mn^{2+}, and Co^{2+}; assume $\Delta_T = 4/9\Delta_O$.

A.2 A linear relationship is observed by plotting $\ln D$ against $\Delta CFSE / \Delta_O$ in the Cartesian coordinate system shown below.
Estimate D for Co^{2+}.

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

A.3 Choose the appropriate set of lattice enthalpies [kJ mol$^{-1}$] from one of the options (a) to (f).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
Part B

A mixed oxide A, which contains La^{3+} and Cu^{2+}, crystallizes in a tetragonal unit cell shown in Fig. 1. In the $[\text{CuO}_6]$ octahedron, the Cu–O length along the z-axis (l_z) is longer than that of the x-axis (l_x), and $[\text{CuO}_6]$ is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals ($d_{x^2−y^2}$ and d_{z^2}).

A can be synthesized by thermal decomposition (pyrolysis) of complex B, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $\text{C}_4\text{H}_2\text{O}_4$, i.e., a diacid. The pyrolysis behavior of B in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO_2. The total weight loss during the formation of A from B is 63.6%. It should be noted that only water and CO_2 are released in the pyrolysis reaction.

<table>
<thead>
<tr>
<th>B.1</th>
<th>Write the chemical formulae for A and B.</th>
<th>6pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2</td>
<td>Calculate l_x and l_z using Fig. 1.</td>
<td>4pt</td>
</tr>
<tr>
<td>B.3</td>
<td>For Cu^{2+} in the distorted $[\text{CuO}6]$ octahedron in A of Fig. 1, write the names of the split e_g orbitals ($d{x^2−y^2}$ and d_{z^2}) in (i) and (ii), and draw the electron configuration in the dotted box in your answer sheet.</td>
<td>4pt</td>
</tr>
</tbody>
</table>
A is an insulator. When one La$^{3+}$ is substituted with one Sr$^{2+}$, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr$^{2+}$-doped A shows superconductivity below 38 K. When a substitution reaction took place for A, 2.05×10^{27} holes m$^{-3}$ were generated.

B.4 Calculate the percentage of Sr$^{2+}$ substituted for La$^{3+}$ based on the mole ratio in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

Cu$_2$(CH$_3$CO$_2$)$_4$ is composed of four CH$_3$CO$_2^-$ coordinated to two Cu$^{2+}$ (Fig. 2A). Cu$_2$(CH$_3$CO$_2$)$_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four CH$_3$CO$_2^-$ and an axis passing through the two Cu$^{2+}$, all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of CH$_3$CO$_2^-$, a “cage complex” is formed. The cage complex Cu$_4$(L$_1$L$_1$L$_1$L$_1$)$_4$ is composed of planar dicarboxylate L$_1$ (Fig. 2B) and Cu$^{2+}$ (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L$_1$. Note that hydrogen atoms are not shown in Fig. 2.
C.1 The θ of the planar dicarboxylate L2 below is fixed to 90°. If the composition of the cage complex formed from L2 and Cu^{2+} is Cu_{n}(L2)_{m}, give the smallest integer combination of n and m. Assume that only the CO_{2}− groups of L2 form a coordination bond to Cu^{2+} ions.

\[\theta = 90° \]
A zinc complex, \(\text{Zn}_4\text{O(\text{CH}_3\text{CO}_2)}_6 \), contains four tetrahedral \(\text{Zn}^{2+} \), six \(\text{CH}_3\text{CO}_2^- \), and one \(\text{O}^{2-} \) (Fig. 3A). In \(\text{Zn}_4\text{O(\text{CH}_3\text{CO}_2)}_6 \), the \(\text{O}^{2-} \) is located at the origin, and the three axes passing through the carbon atoms of \(\text{CH}_3\text{CO}_2^- \) are oriented orthogonal relative to each other. When \(\text{p-benzenedicarboxylate} \) (Fig. 3B, \(\text{L}_3, \theta = 180^\circ \)) is used instead of \(\text{CH}_3\text{CO}_2^- \), the \(\text{Zn}^{2+} \) clusters are linked to each other to form a crystalline solid (X) that is called a “porous coordination polymer” (Fig. 3C). The composition of X is \([\text{Zn}_4\text{O(\text{L}_3\text{L}_3\text{L}_3)_3}]_n \), and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral \(\text{Zn}^{2+} \) cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

Fig. 3

C.2 X has a cubic unit cell with a side length of \(a \) (Fig. 3C) and a density of 0.592 g cm\(^{-3}\). **Calculate** \(a \) in [cm].

C.3 X contains a considerable number of pores, and 1 g of X can accommodate \(3.0 \times 10^2 \) mL of \(\text{CO}_2 \) gas in the pores at 1 bar and 25 °C. **Calculate** the average number of \(\text{CO}_2 \) molecules per pore.
Playing with Non-benzenoid Aromaticity

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

![Photo courtesy: Tohoku Univ.](image)

Part A

Linearifiolanone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.
A.1 Draw the structures of 2 and 6 and clearly identify the stereochemistry where necessary.

Then, ketone 4 is converted into ester 15. Compound 8 (molecular weight: 188) retains all the stereocenters in 7. Compounds 9 and 10 have five stereocenters and no carbon-carbon double bonds. Assume
that H$_2^{18}$O is used instead of H$_2^{16}$O for the synthesis of 18O-labelled-linearifolianones 13 and 14 from 11 and 12, respectively. Compounds 13 and 14 are 18O-labelled isotopomers. Ignoring isotopic labelling, both 13 and 14 provide the same product 15 with identical stereochemistry.
A.2 **Choose** the appropriate structure for A.

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>F₃C-S–OH</td>
<td>F₃C-S–NH₂</td>
<td>O=S–CF₃</td>
<td>O=S–CF₃</td>
</tr>
</tbody>
</table>

A.3 **Draw** the structures of 8–14 and clearly identify the stereochemistry where necessary. Also, **indicate** the introduced 18O atoms for 13 and 14 as shown in the example below.
Part B

Compound 19 is synthesized as shown below. In relation to non-benzenoid aromaticity, 19 can be used as an activator for alcohols, and 20 was converted to 22 via ion-pair intermediate 21. Although the formation of 21 was observed by NMR, 21 gradually decomposes to give 18 and 22.

B.1 Draw the structures of 17–19 and 21. Identifying the stereochemistry is not necessary.
Dynamic Organic Molecules and Their Chirality

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, n represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

![Chemical diagram](image)

The photoreaction proceeds in a manner similar to the following example.
Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated \(\pi \) systems.

<table>
<thead>
<tr>
<th>A.1</th>
<th>Draw the structures of A–C. Stereoisomers should be distinguished.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2</td>
<td>Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The (^1\text{H}) NMR chemical shifts of D are listed below. Draw the structure of D.</td>
</tr>
</tbody>
</table>

\[
\text{[D (δ, ppm in CS}_2\text{, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]}
\]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (\(M \)) or (\(P \)) as shown below.

\[
\text{(M)} \quad \leftrightarrow \quad \text{(P)}
\]

[n]Carbohelicenes with \(n \) larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation
Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound \(\text{E} \) contains three \([5]\)carbohelicene-like moieties in one molecule. One of the stereoisomers is described as \((P, P, P)\) as shown below.

\[
\text{E} \\
(1, 2, 3) = (P, P, P)
\]

\[\text{F}\]

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of \(\text{F} \), \((P)\)-\(\text{F} \), multiple helicene \(\text{G} \) \((C_{66}H_{36})\) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of \(\text{G} \) formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and \(M\) and \(P\) labels according to the same numbering. For instance, the other stereoisomers of \(\text{E} \) should be listed as \((1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), \) and \((M, P, M)\).
Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 Draw the structure of intermediate I (its stereochemistry is not required).
Starting from the optically active precursor J, the same reaction sequence gives the optically active sumanene derivative K. The stereocenters in J suffer no inversion during the metathesis reaction. **Draw** the structure of K with the appropriate stereochemistry.
Likes and Dislikes of Capsule

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
</tbody>
</table>

Good kids don’t do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds 1 and 2 were synthesized as U-shaped molecules with different sizes. Compound 3 was prepared as a comparison of 1 and the encapsulation behavior of these compounds was investigated.
The synthetic route to 2 is shown below. The elemental composition of compound 9: C; 40.49%, H; 1.70%, and O; 17.98% by mass.
A.1 **Draw** the structures of 4-9; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of \(p \)-methoxybenzyl group shown in the scheme above.

In the mass spectrum of 1, the ion peak corresponding to its dimer (\(1_2 \)) was clearly observed, whereas an ion peak for \(3_2 \) was not observed in the spectrum of 3. In the \(^1H \) NMR spectra of a solution of \(1_2 \), all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3. These data indicate that hydrogen bonds are formed between the NH moieties of 1 and atoms \(X \) of another molecule of 1 to form the dimeric capsule.

A.2 **Circle** all the appropriate atom(s) \(X \) in 1.

A.3 **Give** the number of the hydrogen bonds in the dimeric capsule (\(1_2 \)).
The dimeric capsule of 1 (I₂) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

\[Z + 1₂ \rightarrow Z@1₂ \]

The equilibrium constant of the encapsulation of Z into I₂ is given as below:

\[K_a = \frac{[Z@I₂]}{[Z][I₂]} \]

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, I₂ in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound 2 also forms a rigid and larger dimeric capsule (2₂). The ¹H NMR spectrum of 2₂ was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H₉ proton of 2 in the above solvents are summarized below, and no other signals from the H₉ in 2, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

<table>
<thead>
<tr>
<th>solvent</th>
<th>δ (ppm) of H₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆D₆</td>
<td>4.60</td>
</tr>
<tr>
<td>C₆D₅F</td>
<td>4.71</td>
</tr>
<tr>
<td>C₆D₆ / C₆D₅F</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 **Determine** the number of C₆D₆ and C₆D₅F molecules encapsulated in 2₂ giving each H₉ signal.
1H NMR measurements in C$_6$D$_6$ revealed that 2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@2] denotes a species containing one or more solvent molecules.

$$K_a = \frac{[Z@2]}{[Z][solvent@2]}$$

Similarly, the K_a values of CH$_4$ and 1 given as eq (2) at various temperatures in C$_6$D$_6$ were also determined by 1H NMR measurements. The plots of the two association constants (as ln K_a vs 1/T) are shown below.

No C$_6$D$_6$ molecule is encapsulated in 1. In line II, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line II is (3). Therefore, line I corresponds to (4), and line II corresponds to (5).

A.5 Choose the correct options in gaps (1)–(5) in the following paragraph from A and B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(2)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(3)</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>(4)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
</tbody>
</table>