NLD-3 C-0 C-1

NLD-3 C-0 C Sebastian Krikke

IChO General instructions Cover sheet

Please return this cover sheet together with all the related question sheets.

NLD-3 C-0 G-1

Internationale Scheikunde Olympiade 2021 Japan 53ste IChO2021 Japan 25 juli - 2 augustus 2021 https://www.icho2021.org

Algemene Instructies

- U mag alleen een pen gebruiken om het antwoord op te schrijven.
- Uw rekenmachine mag niet programmeerbaar zijn.
- Dit examen heeft **9 opgaven**.
- U kunt de opgaven in willekeurige volgorde maken.
- U heeft **5 uur** om alle opgaven te maken.
- U mag pas **beginnen** nadat het **START**-sein is gegeven.
- Alle uitwerkingen moeten in de daarvoor bestemde antwoordvakken met pen op de **antwoordbladen** worden geschreven. Gebruik de achterkant van de examenbladen als u kladpapier nodig heeft. Houd er rekening mee dat antwoorden die buiten de antwoordvakken zijn geschreven, niet worden beoordeeld.
- Wanneer een berekening vereist is, geef deze berekeningen dan in de daarvoor bestemde vakken. Volle punten voor juiste antwoorden worden alleen gegeven als de volledige uitwerking gegeven is.
- De surveillant geeft een sein wanneer u nog **30 minuten** heeft tot het **STOP**-sein.
- U **moet stoppen** met werken wanneer het **STOP**-sein gegeven wordt. Als u niet stopt met schrijven, wordt uw examen ongeldig verklaard.
- De officiële Engelse versie van dit examen is alleen ter verduidelijking op aanvraag beschikbaar.
- Je mag je werkplek niet verlaten zonder toestemming. Als je hulp nodig hebt (kapotte rekenmachine, toiletbezoek, etc.), steek dan je hand op en wacht tot een surveillant arriveert.

SUCCES!

Opgaven- en Beoordelingsinformatie

	Titel	Totale Score	Percentage
1	Waterstof aan het oppervlak van een meetaal	24	11
2	Isotopen Tijdcapsule	35	11
3	Wet van Lambert-Beer?	22	8
4	Redoxchemie van Zink	32	11
5	Mysterieus Silicium	60	12
6	De Vastestofchemie van Overgangsmetalen	45	13
7	Spelen met niet-benzenoïde aromatische verbindingen	36	13
8	Dynamische Organische Moleculen en hun Chiraliteit	26	11
9	Wel of geen capsule	23	10
		Totaal	100

Fysische Constanten en Vergelijkingen

Constanten

Lichtsnelheid in vacuüm	$c = 2.99792458 imes 10^8 \mathrm{m \ s^{-1}}$
Constante van Planck	$h = 6.62607015 imes 10^{-34} { m J} { m s}$
Elementaire lading	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Massa van een elektron	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Elektrische constante (permittiviteit van vacuüm)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Getal van Avogadro	$N_{\rm A} = 6.02214076 \times 10^{23} {\rm mol^{-1}}$
Constante van Boltzmann	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Constante van Faraday	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gasconstanto	$R = N_{\rm A} \times k_{\rm B} = 8.31446261815324 \text{ J } {\rm K}^{-1} {\rm mol}^{-1}$
Gasconstante	$= 8.2057366081 imes 10^{-2} { m L} { m atm} { m K}^{-1} { m mol}^{-1}$
Atomaire massa-eenheid	$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$
Standaarddruk	$p = 1 \operatorname{bar} = 10^5 \operatorname{Pa}$
Atmosferische druk	$p_{atm} = 1.01325 \times 10^5 Pa$
Nul graden Celsius	$0 ^{\circ}\mathrm{C} = 273.15 \mathrm{K}$
Ångström	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Elektronvolt	$1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}$
Part-per-million	$1 \mathrm{ppm} = 10^{-6}$
Part-per-billion	$1 \mathrm{ppb} = 10^{-9}$
Part-per-trillion	$1 \mathrm{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
Grondtal van de natuurlijke logaritme (eulergetal)	e = 2.718281828459045

Vergelijkingen

De ideale gaswet	PV = nRT , hierin is P de druk, V het volume, n de hoeveelheid stof en T is de abso- lute temperatuur van het ideale gas.
Wet van Coulomb	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, hierin is F de elektrostatische kracht, $k_{\rm e} (\simeq 9.0 \times 10^9 {\rm N}{\rm m}^2{\rm C}^{-2})$ is de constante van Coulomb, q_1 en q_2 zijn de grootten van de ladingen, en r is de afstand tussen de ladingen.
De eerste wet van de thermodynamica	$\Delta U = q + w$, hierin is ΔU de verandering in de inwendige energie, q de toegevoegde
	Warmte en w de Verrichte arbeid.
Enthalpie H	H = U + PV
Entropieformule van Boltzmann	$S = k_{\rm B} \ln W$, hierin is W het aantal microtoestanden.
De verandering van en-	$\Delta S = \frac{q_{\rm rev}}{\pi}$
tropie ΔS	, hierin is $q_{\sf rev}$ de warmte voor het omkeerbare proces.
Gibbs vrije energie G	G = H - TS
	$\Delta_{\rm r}G^\circ = -RT\ln K = -zFE^\circ$
	, hierin is K de evenwichtsconstante, z het aantal elektronen en E° de standaardelektrodepotentiaal.
Reactiequotiënt Q	$\Delta_{\rm r}G = \Delta_{\rm r}G^\circ + RT\ln Q$
•	Voor een reactie
	$aA + bB \rightleftharpoons cC + dD$
	$O = \frac{\left[C\right]^{c}\left[D\right]^{a}}{1}$
	$ = [A]^a [B]^b $
	, hierin is [A] de concentratie van A.

Warmteverandering Δq	$\Delta q = nc_{\rm m} \Delta T$						
	, merin is c_m de temperatuur-onamankenjke molaire warmtecapaciteit.						
Wet van Nernst voor re-	$E = E^{\circ} + \frac{RI}{zF} \ln \frac{C_{\text{ox}}}{C_{\text{rod}}}$						
doxreacties	, hierin is C_{ox} de concentratie van de oxidator en C_{red} de concentratie van						
	de reductor.						
Vergelijking van Arrhe-	$k = A \exp\left(-\frac{E_a}{BT}\right)$						
nius	, hierin is k de reactiesnelheidsconstante, A de pre-exponentiële factor en						
	E_{a} is de activeringsenergie.						
	$\exp^{a}(x) = e^{x}$						
Wet van Lambert-Beer	$A = \varepsilon lc$						
	, hierin is A de extinctie, ε de molaire extinctiecoëfficiënt, l de optische						
	weglengte en c de concentratie van de oplossing.						
Henderson-Hasselbalch	Voor een evenwicht						
veraeliikina	$HA \rightleftharpoons H^+ + A^-$						
5,55	, met de evenwichtsconstante is K_a geldt,						
	$\left(\begin{bmatrix} A^{-} \end{bmatrix} \right)$						
	$pH = pK_a + \log\left(\frac{z}{ HA }\right)$						
Energie van een foton	$E = h\nu = h\frac{c}{\lambda}$						
	, hierin is $ u$ de frequentie en λ de golflengte van het licht.						
De som van een geome-	Als $x \neq 1$,						
trische reeks	$1 + x + x^{2} + \dots + x^{n} = \sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$						
Benaderingsvergelijking	Als $x \ll 1$,						
die kan worden gebruikt	$\frac{1}{1-x} \simeq 1+x$						
om opgaven op te	1-x						
lossen							

G0-6 Nederlands (Netherlands)

NLD-3 C-0 G-6

Periodiek Systeem

18	² Helium 4.003	10 Neon 20.180	18 Ar Argon 39.948	36	Krypton 83.798	Xe Xe	Xenon 131.293	°" Br	Radon [222]	Oganesson [294]					
17		9 F Fluorine 18.998	17 CI Chlorine 35.452	35 2	Bromine 79.904	<u>в</u> —	lodine 126.904	85 At	Astatine [210]	TIT Tennessine [293]	۲۱ Lu	Lutetium 174.967	103	2	Lawrencium [262]
16		⁸ O ^{Oxygen} 15.999	16 Sultur 32.068	34 0	Selenium 78.971	Te	Tellurium 127.60	Po B4	Polonium [210]	116 LV Livermorium [293]	βγ	Ytterbium 173.045	102	No	Nobelium [259]
15		7 N Nitrogen 14.007	15 P Phosphorus 30.974	33	Arsenic 74.922	Sb Sb	Antimony 121.760	۳ ۳	Bismuth 208.98	115 MC Moscovium [289]	°° Tm	Thulium 168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	14 Silicon 28.085	35	Germanium 72.630	s n	Tin 118.710	⁸² Pb	Lead 207.2	114 FI Flerovium [289]	88 Fr	Erbium 167.259	100	E	Fermium [257]
13		5 B Boron 10.814	13 Aluminium 26.982	ۍ _۳	Gallium 69.723	⁴⁹	I14.818	H H	Thallium 204.384	113 Nhonium [278]	67 Ho	Holmium 164.930	66	ES	Einsteinium [252]
12				30	Zinc 65.38	⁴⁸ Cd	Cadmium 112.414	[∞] BH	Mercury 200.592	112 Cn Copernicium [285]	۵ ۵	Dysprosium 162.500	86	5	Californium [252]
11		active element]		50	Copper 63.546	Ag	silver 107.868	™Au	Gold 196.967	111 Rg Roentgenium [280]	56 Tb	Terbium 158.925	97	ž	Berkelium [247]
10		s for the radios		28 NI:	Nickel 58.693	Pd Pd	Palladium 106.42	Pt	Platinum 195.084	110 DS Darmstadtium [281]	64 Gd	Gadolinium 157.25	96	E C	Curium [247]
6		[in parenthesi		27 7 0	Cobalt 58.933	⁴⁵ Rh	Rhodium 102.906	77 Ir	Indium 192.217	109 Meitnerium [276]	⁸⁸ Eu	Europium 151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		26 L •	1 C Iron 55.845	₽ª	Ruthenium 101.07	0s Os	^{Osmium} 190.23	108 Hs Hassium [277]	Sm	samarium 150.36	94	лЧ	Plutonium [239]
7	Key:	113 Nhonium [278]		25 NAM	Manganese 54.938	Tc ⁴³	Technetium [99]	75 Re	Rhenium 186.207	107 Bh Bohrium [272]	Pm	Promethium [145]	93	dN	Neptunium [237]
9				24 24	Chromium 51.996	42 Mo	Molybdenum 95.95	74 W	Tungsten 183.84	106 Sg Seaborgium [271]	°° N	Neodymium 144.242	92	⊃	Uranium 238.029
5				23	v Vanadium 50.942	h⁴ Nb	Niobium 92.906	_{ته} Ta	Tantalum 180.948	105 Db Dubnium [268]	Pr	Praseodymium 140.908	91	Ра	Protactinium 231.036
4				75 F	Titanium 47.867	²₀ Zr	Zirconium 91.224	72 H	Hafnium 178.49	104 Rf Rutherfordium [267]	Ce Ce	Cerium 140.116	96	4	Thorium 232.038
3				24 00	Scandium 44.956	39 7	Yttrium 88.906	⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103 AC-Lr Actinoids	57 La	Lanthanum 138.905	68	Ac	Actinium [227]
2		4 Be Beryllium 9.012	12 Mg Magnesium 24.306	° C	Calcium 40.078	s. °	Strontium 87.62	Ba Ba	Barium 137.327	B8 Radium [226]	⁵⁷⁻⁷¹ La-Lu :	Lanthanoids	89-103	Ac-Lr	Actinoids
+	¹ Hydrogen 1.008	³ Li Lithium 6.968	11 Na ^{Sodium} 22.990	19	Potassium 39.098	³⁷ Rb	Rubidium 85.468	Cs Cs	Caesium 132.905	⁸⁷ Fr Francium [223]					

NLD-3 C-0 G-7

¹H NMR Chemical Shifts

NLD-3 C-0 G-1

International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org

General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has **9 problems**.
- You can solve the problems in any order.
- You will have **5 hours** to solve all problems.
- You can **begin** working only after the **START** command is given.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

	Title	Total Score	Percentage
1	Hydrogen at a Metal Surface	24	11
2	Isotope Time Capsule	35	11
3	Lambert–Beer Law?	22	8
4	The Redox Chemistry of Zinc	32	11
5	Mysterious Silicon	60	12
6	The Solid-State Chemistry of Transition Metals	45	13
7	Playing with Non-benzenoid Aromaticity	36	13
8	Dynamic Organic Molecules and Their Chirality	26	11
9	Likes and Dislikes of Capsules	23	10
		Total	100

Physical Constants and Equations

Constants

Speed of light in vacuum	$c = 2.99792458 imes 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \mathrm{J \ s}$
Elementary charge	$e = 1.602176634 \times 10^{-19}\mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Electric constant (permittivity of vacuum)	$\varepsilon_0 = 8.85418781 \times 10^{-12}\mathrm{F}\mathrm{m}^{-1}$
Avogadro constant	$N_{\rm A} = 6.02214076 \times 10^{23}{\rm mol^{-1}}$
Boltzmann constant	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Faraday constant	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gas constant	$R = N_{\rm A} imes k_{\rm B} = 8.31446261815324 \; {\rm J} \; {\rm K}^{-1} \; {\rm mol}^{-1}$
Gas constant	$= 8.2057366081 imes 10^{-2} { m L} { m atm} { m K}^{-1} { m mol}^{-1}$
Unified atomic mass unit	$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{atm} = 1.01325 \times 10^5 \mathrm{Pa}$
Zero degree Celsius	$0 {}^{\circ}\text{C} = 273.15 \text{K}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Electronvolt	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
Part-per-million	$1 \text{ppm} = 10^{-6}$
Part-per-billion	$1 \mathrm{ppb} = 10^{-9}$
Part-per-trillion	$1 \mathrm{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

Equations

The ideal gas law	PV = nRT
-	, where P is the pressure, V is the volume, n is the amount of substance,
	<i>T</i> is the absolute temperature of ideal gas.
Coulomb's law	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, where F is the electrostatic force, $k_{\rm e}(\simeq9.0\times10^9{\rm Nm^2C^{-2}})$ is Coulomb's constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance between the charges.
The first law of thermo-	$\Delta U = q + w$
dynamics	, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.
Enthalpy H	H = U + PV
Entropy based on Boltz-	$S = k_{B} \ln W$
mann's principle <i>S</i>	, where W is the number of microstates.
The change of entropy	$\Delta S = \frac{q_{rev}}{T}$
ΔS	, where $q_{\sf rev}$ is the heat for the reversible process.
Gibbs free energy G	G = H - TS
	$\Delta_{r}G^{\circ} = -RT\ln K = -zFE^{\circ}$
	, where K is the equilibrium constant, z is the number of electrons, E° is
-	the standard electrode potential.
Reaction quotient Q	$\Delta_{\rm r}G = \Delta_{\rm r}G^\circ + RT \ln Q$
	For a reaction $A + B \rightarrow C + D$
	$a\mathbf{A} + b\mathbf{D} \rightleftharpoons c\mathbf{C} + d\mathbf{D}$
	$Q = \frac{\left[\mathbf{C}\right] \left[\mathbf{D}\right]}{\left[\mathbf{A}\right]^{a} \left[\mathbf{D}\right]^{b}}$
	[A] $[B]where [A] is the concentration of A$
	, where [A] is the concentration of A.

Heat change Δq	$\Delta q = nc_{\rm m}\Delta T$							
	, where $c_{\rm m}$ is the temperature-independent molar heat capacity.							
Nernst equation for re- dox reaction	$E = E^{\circ} + \frac{\kappa T}{zF} \ln \frac{C_{ox}}{C_{red}}$, where C_{ox} is the concentration of oxidized substance, C_{red} is the concentration of reduced substance							
Arrhenius equation	$k = A \exp\left(-\frac{E_a}{RT}\right)$, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy. exp $(x) = e^x$							
Lambert–Beer equation	$A = \varepsilon lc$							
	, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.							
Henderson-Hasselbalch	For an equilibrium							
equation	$H\Delta \rightarrow H^+ \perp \Delta^-$							
equation	where equilibrium constant is K							
	, where equilibrium constant is M_a ,							
	$pH = pK_{a} + log\left(\frac{ A }{ HA }\right)$							
Energy of a photon	$E = h\nu = h\frac{c}{\lambda}$							
	, where $ u$ is the frequency, λ is the wavelength of the light.							
The sum of a geometric	When $x \neq 1$,							
series	$1 + x + x^{2} + \dots + x^{n} = \sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$							
Approximation equation	When $x \ll 1$,							
that can be used to solve problems	$\frac{1}{1-x} \simeq 1+x$							

NLD-3 C-0 G-6

Periodic Table

18	² Helium 4.003	10 Neon 20.180	¹⁸ Ar ^{Argon} 39.948	× 8	Krypton 83.798	Xe Xe	Xenon 131.293	°°	Radon [222]	118 Og Oganesson	[294]						
17		9 F Fluorine 18.998	CI CI Chlorine 35.452	ж ж	Bromine 79.904	- 23	lodine 126.904	85 At	Astatine [210]	Tennessine	[293]	71	Lutetium	174.967	103	ב	[262]
16		8 O Oxygen 15.999	16 Suffur 32.068	34 N 34	Selenium 78.971	Te	Tellurium 127.60	Po Po	Polonium [210]	Livermorium	[293]	70	Ytterbium	173.045	102	8	Nobelium [259]
15		N N Nitrogen 14.007	15 Phosphorus 30.974	33 Δς	Arsenic 74.922	Sb Sb	Antimony 121.760	Bi 88	Bismuth 208.98	Moscovium	[289]	69 F	Thulium	168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	14 Silicon 28.085	ی ۳	Germanium 72.630	Sn	т _п 118.710	Pb	Lead 207.2	114 Flerovium	[585]	89 1	Erbium	167.259	100	E	Fermium [257]
13		5 B Boron 10.814	13 Aluminium 26.982	ي ۳	Gallium 69.723	⁴⁹	Indium 114.818	H H	Thallium 204.384	Nihonium N	[2/8]	67	Holmium	164.930	⁶⁶ I	ES	Einsteinium [252]
12			1	30 7	Zinc 65.38	⁸ G	cadmium 112.414	°° ₽	Mercury 200.592	Copernicium	[682]	99	Dysprosium	162.500	98	5	Californium [252]
11		active element]		≈ ē	Copper 63.546	Ag	silver 107.868	Au	Gold 196.967	111 Roentgenium	[180]	985 H	Terbium	158.925	-26 -	ž	Berkelium [247]
10		is for the radio		28 Ni	Nickel 58.693	⁴ ⁶ Pd	Palladium 106.42	Pt Pt	Platinum 195.084	110 DS Darmstadtium	[182]	64 64	Gadolinium	157.25	⁹⁶ (ي ع	Curium [247]
6		[in parenthesi		27 C	Cobalt 58.933	⁴⁵ Rh	Rhodium 102.906	۳ اr	Indium 192.217	109 Mt Meitnerium	[5/6]	63	Europium	151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		ъ ²⁶	55.845	₽4 Ru	Ruthenium 101.07	0s	^{Osmium} 190.23	Hassium Hassium	[1/2]	62 62	Samarium	150.36	94 1	חר	Plutonium [239]
7	Key:	113 Nhonium [278]		²⁵ Mn	Manganese 54.938	⁴³ Tc	Technetium [99]	75 Re	Rhenium 186.207	¹⁰⁷ Bhrium Bohrium	[2/2]	⁶¹	Promethium	[145]	93	d	Neptunium [237]
9				24 2	Chromium 51.996	Mo ⁴²	Molybdenum 95.95	74 W	Tungsten 183.84	106 Sg Seaborgium	[1/2]	09	Neodymium	144.242	92	5	Uranium 238.029
5				82 >	Vanadium 50.942	⁴¹ Nb	Niobium 92.906	™ Ta	Tantalum 180.948	105 Db Dubnium	[208]	22	Praseodymium	140.908	⁹¹	ц ц	Protactinium 231.036
4				7 52	Titanium 47.867	⁴⁰ Zr	zirconium 91.224	Hf T2	Hafhium 178.49	104 Rutherfordium	[702]	28	Cerium	140.116	06	с -	232.038
e				24 V	Scandium 44.956	³⁹	Yttrium 88.906	⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103 Ac-Lr Actinoids		57	Lanthanum	138.905	68 .	AC	Actinium [227]
2		4 Be Beryllium 9.012	12 Mg Magnesium 24.306	° c	calcium 40.078	sr Sr	Strontium 87.62	Ba Ba	Barium 137.327	B8 Radium Badium	[922]	57-71	Lanthanoids		89-103	AC-Lr	Actinoids
-	Hydrogen 1.008	3 Lithium 6.968	11 Na sodium 22.990	e 7	Potassium 39.098	37 Rb	Rubidium 85.468	Cs SS	caesium 132.905	87 Fr Francium	[223]						

NLD-3 C-0 G-7

¹H NMR Chemical Shifts

 $\Delta \delta$ for one alkyl group-substitution: *ca.* +0.4 ppm

NLD-3 C-1 C-1

NLD-3 C-1 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Waterstof aan het oppervlak van een metaal

11% van het totaal												
Vraag	A.1	A.2	B.1	B.2	B.3	B.4	Totaal					
Punten	6	4	5	3	3	3	24					
Score												

Er wordt verwacht dat waterstof een toekomstige energiebron is die onafhankelijk is van fossiele brandstoffen. Hier gaan we de waterstofopslag in een metaal bestuderen, die samenhangt met waterstoftransport en -opslag technologieën.

Onderdeel A

Waterstof wordt geabsorbeerd in de bulk van een metaal via het oppervlak van dat metaal. We bekijken eerst het adsorptieproces van waterstof aan het metaaloppervlak: $H_2(g) \rightarrow 2H(ad)$, waarbij de gasvormige en geadsorbeerde toestand van waterstof weergegeven zijn met respectievelijk (g) en (ad). Waterstofmoleculen (H_2) die het metaaloppervlak (M) bereiken, dissociëren aan het oppervlak en worden geadsorbeerd als H atomen (Fig. 1). De potentiële energie van H_2 is in Fig. 1 weergegeven met twee variabelen: de interatomaire afstand, d, en de hoogte tot het metaaloppervlak en dat het zwaartepunt altijd op de verticale gestippelde lijn in Fig. 1 ligt. Fig. 2 laat de contourplot van de potentiële energie ver in kJ per mol H_2 . De tussenruimte tussen twee ononderbroken lijnen is 20 kJ mol⁻¹. De nulpuntsvibratie-energie wordt buiten beschouwing gelaten.

Q1-2 Nederlands (Netherlands)

NLD-3 C-1 Q-2

Fig.1 Definitie van de variabelen. De tekening is niet op schaal.

A.1 <u>**Kies v**</u>oor elk van de volgende punten (i)–(iii), de waarde uit A-G die het dichtst 6pt in de buurt ligt.

(i) De interatomaire afstand in een gasvormig H₂ molecuul. (ii) De interatomaire afstand tussen metaalatomen (d_M in Fig. 1). (iii) De afstand van geadsorbeerde H atomen tot het oppervlak (h_{ad} in Fig. 1)

> A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2KiesVoor elk van de volgende punten (i)-(ii), de waarde uit A-H die het dichtst4ptin de buurt ligt.(i) De energie die nodig is voor de dissociatie van gasvormig H2 tot gasvormig H [H2(g) \rightarrow 2H(g)].(ii) De energie die vrijkomt bij de adsorptie van gasvormig H2 [H2(g) \rightarrow 2H(ad)].(ii) De energie die vrijkomt bij de adsorptie van gasvormig H2 [H2(g) \rightarrow 2H(ad)].A. 20 kJ mol⁻¹B. 40 kJ mol⁻¹C. 60 kJ mol⁻¹D. 100 kJ mol⁻¹E. 150 kJ mol⁻¹F. 200 kJ mol⁻¹G. 300 kJ mol⁻¹H. 400 kJ mol⁻¹

NLD-3 C-1 Q-4

Onderdeel B

De geadsorbeerde waterstofatomen worden dan ofwel geabsorbeerd in de bulk, of recombineren tot $H_2(g)$ (= desorberen terug in de gasfase), zoals weergegeven in reacties (1a) en (1b). H(ab) geeft een waterstofatoom weer dat is geabsorbeerd in de bulk.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

De reactiesnelheid per plaats aan het oppervlak voor adsorptie, desorptie en absorptie zijn respectievelijk $r_1[s^{-1}], r_2[s^{-1}]$ en $r_3[s^{-1}]$. Ze worden weergegeven als:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

Waarbij k_1 [s⁻¹ Pa⁻¹], k_2 [s⁻¹] en k_3 [s⁻¹] de reactiesnelheidsconstanten zijn en P_{H_2} de druk van H₂. Van de beschikbare plaatsen aan het oppervlakte, is θ ($0 \le \theta \le 1$) de fractie die bezet is door H atomen. Er wordt aangenomen dat adsorptie en desorptie snel zijn in vergelijking met absorptie ($r_1, r_2 \gg r_3$) en dat θ constant is.

B.1 r_3 kan worden uitgedrukt als: 5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5) <u>Druk</u> C <u>uit</u> in k_1 en k_2 .

Een metaalmonster met een oppervlakte van $S = 1.0 \times 10^{-3} \text{ m}^2$ is geplaatst in een bak van 1liter (1L = $1.0 \times 10^{-3} \text{ m}^3$) met H₂ ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). Het aantal waterstofatomen dat aan het oppervlak was geadsorbeerd, was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. De temperatuur van het oppervlak werd constant gehouden op T = 400 K. Terwijl de reacties (1a) en (1b) verliepen, nam P_{H_2} met een constante snelheid $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$ af. Neem aan dat H₂ een ideaal gas is en dat het volume van het metaalmonster verwaarloosbaar is.

- **B.2** <u>**Bereken**</u> het aantal mol H atomen dat geabsorbeerd wordt per oppervlakte- 3pt eenheid en per tijdseenheid, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** Bij een temperatuur T = 400 K, is C gelijk aan 1.0×10^2 Pa⁻¹. Bereken de waarde 3pt van k_3 bij 400 K. Als je geen antwoord hebt gevonden bij **B.2**, gebruik dan $A = 3.6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** Bij een andere *T* is gegeven dat $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ en $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$. Kies uit (a)-(h) de juiste plot voor r_3 als een functie van P_{H_2} bij deze temperatuur.

Hydrogen at a Metal Surface

11 % of the total											
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total				
Points	6	4	5	3	3	3	24				
Score											

NLD-3 C-1 Q-1

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $H_2(g) \rightarrow 2H(ad)$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy in units of kJ per mole of H_2 . The solid line spacing is 20 kJ mol⁻¹, the dashed line spacing is 100 kJ mol⁻¹, and the spacing between solid and dashed lines is 80 kJ mol⁻¹. The zero-point vibration energy is ignored.

Fig.1 Definition of variables. Drawing is not in scale.

A.1	For each of t (i) The intera (ii) The intera (iii) The dista	he following i tomic distanc atomic distanc nce of adsorb	tems (i)–(iii), <u>s</u> e for a gaseo ce between m bed H atoms f	select the closus H_2 molecunetal atoms (d from the surfation of the su	sest value froi le / _M in Fig. 1) ace (h _{ad} in Fig.	m A–G. 1)	6pt
		A. 0.03 nm	B. 0.07 nm	C. 0.11 nm	D. 0.15 nm		
		E. 0.19 nm	F. 0.23 nm	G. 0.27 nm			

A.2	A.2 For each of the following items (i)–(ii), <u>select</u> the closest value from A–H. (i) the energy required for the dissociation of gaseous H ₂ to gaseous H $[H_2(g) \rightarrow 2H(g)]$ (ii) the energy released during the adsorption of a gaseous H ₂ $[H_2(g) \rightarrow 2H(ad)]$				
	A. 20 kJ mol ⁻¹	B. 40 kJ mol ⁻¹	C. 60 kJ mol ⁻¹	D. 100 kJ mol ⁻¹	
	E. 150 kJ mol ^{–1}	F. 200 kJ mol ⁻¹	G. 300 kJ mol ^{–1}	H. 400 kJ mol ^{–1}	

NLD-3 C-1 Q-4

Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

The reaction rates per surface site for adsorption, desorption, and absorption are $r_1[s^{-1}], r_2[s^{-1}]$ and $r_3[s^{-1}]$, respectively. They are expressed as:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

where $k_1 [s^{-1} Pa^{-1}]$, $k_2 [s^{-1}]$ and $k_3 [s^{-1}]$ are the reaction rate constants and P_{H_2} is the pressure of H_2 . Among the sites available on the surface, θ ($0 \le \theta \le 1$) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_1, r_2 \gg r_3$) and that θ remains constant.

B.1
$$r_3$$
 can be expressed as:5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5)**Express** C using k_1 and k_2 .

A metal sample with a surface area of $S = 1.0 \times 10^{-3} \text{ m}^2$ was placed in a container (1L = $1.0 \times 10^{-3} \text{ m}^3$) with H₂ ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. The surface temperature was kept at T = 400 K. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$. Assume that H₂ is an ideal gas and that the volume of the metal sample is negligible.

- **B.2** Calculate the amount of H atoms in moles absorbed per unit area of the surface 3pt per unit time, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** At T = 400 K, C equals 1.0×10^2 Pa⁻¹. <u>Calculate</u> the value of k_3 at 400 K. If you 3pt did not obtain the answer to **B.2**, use $A = 3.6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** At a different T, $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ and $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$ are given. For r_3 as a 3pt function of P_{H_2} at this temperature, **select** the correct plot from (a)–(h).

A1-1 Nederlands (Netherlands)

NLD-3 C-1 A-1

Waterstof aan het oppervlak van een metaal

Onderdeel A

A.1 (6 pt)

NLD-3 C-1 A-2

Onderdeel B

B.1 (5 pt)

<u>C</u> =

B.2 (3 pt)

 $\underline{A} = \mod \mathrm{s}^{-1} \mathrm{m}^{-2}$

NLD-3 C-1 A-3

B.3 (3 pt)		
$k_3 =$	<u>s⁻¹</u>	
B.4 (3 pt)		

NLD-3 C-2 C-1

NLD-3 C-2 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Isotopen tijdcapsule

11% van het totaal					
Vraag	A.1	A.2	A.3	A.4	Totaal
Punten	8	8	10	9	35
Score					

Moleculen die alleen verschillen in isotopensamenstelling, zoals CH_4 en CH_3D , worden isotopologen genoemd. Isotopologen worden geacht dezelfde chemische eigenschappen te hebben. In de natuur is er echter een klein verschil.

Ga ervan uit dat alle stoffen die in deze opgave worden genoemd in de gasfase zitten.

Laten we het volgende evenwicht beschouwen:

$${}^{12}\mathsf{C}^{16}\mathsf{O}_2 + {}^{12}\,\mathsf{C}^{18}\mathsf{O}_2 \rightleftharpoons 2{}^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O} \qquad \qquad K = \frac{[{}^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O}]^2}{[{}^{12}\mathsf{C}^{16}\mathsf{O}_2][{}^{12}\mathsf{C}^{18}\mathsf{O}_2]} \tag{1}$$

De entropie, *S*, neemt toe met het toenemen van het aantal microscopische toestanden van het systeem, *W*:

$$S = k_{\rm B} \ln W \tag{2}$$

 $W = 1 \text{ voor } {}^{12}\text{C}{}^{16}\text{O}_2 \text{ en } {}^{12}\text{C}{}^{18}\text{O}_2$. Echter, $W = 2 \text{ voor een } {}^{12}\text{C}{}^{16}\text{O}{}^{18}\text{O}$ molecuul omdat de zuurstofatomen in dit molecuul verschillend zijn. Omdat aan de rechterkant van evenwicht 1 twee ${}^{12}\text{C}{}^{16}\text{O}{}^{18}\text{O}$ moleculen staan, geldt $W = 2^2 = 4$.

A.1 De enthalpieverandering, ΔH , van evenwicht 3 is positief en onafhankelijk van 8pt de temperatuur.

$$H_2 + DI \rightleftharpoons HD + HI$$
 (3)

Bereken de evenwichtsconstante, K, van evenwicht 3 bij een hele lage temperatuur (neem $T \rightarrow 0$) en bij een hele hoge temperatuur (neem $T \rightarrow +\infty$). Neem hierbij aan dat ΔH naar een constante waarde convergeert bij zeer hoge temperaturen.

De ΔH van het volgende evenwicht kan met moleculaire vibraties worden verklaard.

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

De vibratie-energie, *E*, van een twee-atomig molecuul bij T = 0 K is gegeven door vergelijking 5 en de vibratiefrequentie, ν [s⁻¹], is gegeven door vergelijking 6:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Hierin is k de bindingssterkte en μ de gereduceerde massa die bepaald wordt door de massa's van de twee atomen in het twee-atomige molecuul, m_1 en m_2 , volgens:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 Het golfgetal van de vibratie van H₂ bedraagt 4161.0 cm⁻¹ . **Bereken** de ΔH 8pt van het volgende evenwicht bij T = 0 K in J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Neem aan dat:

- alleen de vibratie-energie bijdraagt aan de ΔH .
- de k voor H₂, HD, en D₂ hetzelfde is.
- de massa van een H atoom 1 Da en de massa van een D atoom 2 Da is.

De molaire verhouding van H₂, HD, en D₂ hangt af van de temperatuur in een systeem in evenwicht. De verandering van de molverhouding van D₂ is gedefinieerd als Δ_{D_2} .

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Hierin verwijst R_{D_2} naar $\frac{[D_2]}{[H_2]}$ in het monster en $R_{D_2}^*$ naar $\frac{[D_2]}{[H_2]}$ bij $T \to +\infty$. Hierbij moet worden opgemerkt dat de verdeling van de isotopen willekeurig wordt bij $T \to +\infty$.

A.3 Bereken Δ_{D_2} met een natuurlijke D abundantie (is het relatieve voorkomen in de natuur) bij een temperatuur waarbij voor evenwicht 4 geldt *K* = 0.300. Neem aan dat de natuurlijke abundanties van D en H respectievelijk 1.5576×10^{-4} en $1 - 1.5576 \times 10^{-4}$ zijn.

NLD-3 C-2 Q-4

In het algemeen geldt dat de molaire verhouding van dubbel gesubstitueerde isotopologen met twee zware isotoopatomen in één molecuul toeneemt bij afname van de temperatuur. Laten we eens kijken naar de molaire verhouding in CO₂ moleculen met molaire massa van 44 en 47, hieronder aangegeven met CO₂[44] en CO₂[47]. De grootheid Δ_{47} is gedefinieerd als

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} verwijst naar $\frac{[CO_2[47]]}{[CO_2[44]]}$ in het monster en R_{47}^* naar $\frac{[CO_2[47]]}{[CO_2[44]]}$ bij $T \to +\infty$. De natuurlijke abundanties van de koolstof- en zuurstofatomen staan in onderstaande tabellen. Laat isotopen die niet getoond zijn buiten beschouwing.

	¹² C	¹³ C
natuurlijke abundantie	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
natuurlijke abundantie	0.997621	0.0003790	0.0020000

De temperatuurafhankelijkheid van Δ_{47} kan als volgt worden berekend (de *T* is hier de absolute temperatuur in K) :

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 De R_{47} van fossiel plankton verkregen van uit de oceaan bij Antarctica bedraagt 9pt 4.50865×10^{-5} . Schat, door middel van een berekening de temperatuur met behulp van deze R_{47} . Deze temperatuur wordt geïnterpreteerdals de luchttemperatuur tijdens het tijdperk waarin het plankton leefde. Beschouw voor de berekening alleen de meest voorkomende isotopoloog van $CO_2[47]$.

Isotope Time Capsule

11 % of the total						
Question	A.1	A.2	A.3	A.4	Total	
Points	8	8	10	9	35	
Score						

Molecular entities that differ only in isotopic composition, such as CH_4 and CH_3D , are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

The entropy, *S*, increases with increasing the number of possible microscopic states of a system, *W*:

$$S = k_{\rm B} \ln W \tag{2}$$

W = 1 for ${}^{12}C^{16}O_2$ and ${}^{12}C^{18}O_2$. In contrast, W = 2 for a ${}^{12}C^{16}O^{18}O$ molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two ${}^{12}C^{16}O^{18}O$ molecules, $W = 2^2 = 4$.

A.1 The enthalpy change,
$$\Delta H$$
, of eq. 3 is positive regardless of the temperature. 8pt
 $H_2 + DI \rightleftharpoons HD + HI$ (3)
Calculate the equilibrium constants, *K*, for eq. 3 at very low (think of $T \rightarrow 0$) and

<u>**Calculate**</u> the equilibrium constants, K, for eq. 3 at very low (think of $T \rightarrow 0$) and very high (think of $T \rightarrow +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

$$2\mathsf{H}\mathsf{D} \rightleftharpoons \mathsf{H}_2 + \mathsf{D}_2 \qquad \qquad K = \frac{[\mathsf{H}_2][\mathsf{D}_2]}{[\mathsf{H}\mathsf{D}]^2} \tag{4}$$

At T = 0 K, the vibrational energy of a diatomic molecule whose vibration frequency is ν [s⁻¹] is expressed as:

$$E = \frac{1}{2}h\nu$$
(5)

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2 , according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 The vibration of H_2 is at 4161.0 cm⁻¹ when reported as a wavenumber. 8pt <u>**Calculate**</u> the ΔH of the following equation at T = 0 K in units of J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Assume that:

- only the vibrational energy contributes to the $\Delta H.$
- the k values for H₂, HD, and D₂ are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.

The molar ratio of H₂, HD, and D₂ depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D₂.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Here, R_{D_2} refers to $\frac{[D_2]}{[H_2]}$ in the sample and $R_{D_2}^*$ to $\frac{[D_2]}{[H_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 Calculate Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.

NLD-3 C-2 Q-4

In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO₂ molecules with molecular weights of 44 and 47, which are described as CO₂[44] and CO₂[47] below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} refers to $\frac{[CO_2[47]]}{[CO_2[44]]}$ in the sample and R_{47}^* to $\frac{[CO_2[47]]}{[CO_2[44]]}$ at $T \to +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

	¹² C	¹³ C
natural abundance	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
natural abundance	0.997621	0.0003790	0.0020000

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5} . 9pt **Estimate** the temperature using this R_{47} . This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of $CO_2[47]$ for the calculation.

A2-1 Nederlands (Netherlands)

NLD-3 C-2 A-1

Isotopen tijdcapsule

A.1 (8 pt)

 $\underline{T \rightarrow 0: K =}$, $\underline{T \rightarrow +\infty: K =}$

A.2 (8 pt)	
$\Delta H =$	J mol ⁻¹

A.3 (10 pt) $\Delta_{\rm D_2} =$

NLD-3 C-2 A-3

A.4 (9 pt)	
T =	

NLD-3 C-3 C-1

NLD-3 C-3 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Wet van Lambert-Beer?

8% van het totaal						
Vraag A.1 B.1 B.2 Totaal						
Punten 10 6 6 22						
Score						

Laat in deze opgave de absorptie door de cuvet en het oplosmiddel buiten beschouwing. De temperatuur van alle oplossingen en gassen wordt constant gehouden op 25 °C.

Onderdeel A

Oplossing **X** werd gemaakt door HA en NaA op te lossen in water. De concentraties [A⁻], [HA], and [H⁺] in oplossing **X** zijn respectievelijk 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹ en 1.00×10^{-4} mol L⁻¹. Deze concentraties hangen met elkaar samen via het volgende zuur-base evenwicht:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

De optische weglengte is l in onderdeel A. Laat de dichtheidsverandering door verdunning buiten beschouwing. Neem aan dat er, behalve de reactie in (1), geen andere reacties plaatsvinden.

A.1 De extinctie (Eng. absorbance, *A*) van **X** was A_1 , bij golflengte λ_1 . Vervolgens 10pt werd oplossing **X** verdund tot tweemaal zijn oorspronkelijke volume door zoutzuur met pH = 2.500 toe te voegen. Na het verdunnen was de extinctie nog steeds A_1 bij golflengte λ_1 . **Bepaal** de verhouding $\varepsilon_{HA}/\varepsilon_{A^-}$ bij golflengte λ_1 , waar ε_{HA} en ε_{A^-} staan voor de extinctiecoëfficiënten van respectievelijk HA en A⁻.

NLD-3 C-3 Q-2

Onderdeel B

We beschouwen het volgende evenwicht in de gasfase.

$$D \rightleftharpoons 2M$$
 (2)

Een balkvormige container met een transparante beweegbare wand met doorsnede *S* (zie onderstaande figuur) wordt gevuld met zuiver gas D bij een druk *P*. Het evenwicht stelt zich in bij constante druk *P*. De extinctie van het gas is $A = \varepsilon(n/V)l$, waar ε , *n*, *V*, en *l* staan voor respectievelijk de extinctie-coëfficiënt, de hoeveelheid gas in mol, het volume van het gas en de optische weglengte. Neem aan dat alle componenten van het gasmengsel zich gedragen als ideale gassen.

Gebruik waar nodig de volgende definities.

	Beginto	pestand	Evenwichtstoestand		
	D	M	D	М	
Partiële druk	Р	0	p_{D}	p_{M}	
Hoeveelheid in mol	n_0	0	n_{D}	n_{M}	
Volume	V ₀		I	7	

- **B.1** De extinctie van het gasmengsel bij golflengte λ_{B1} , gemeten vanuit de *x*-richting ($l = l_x$), was A_{B1} zowel in de begintoestand als in de evenwichtstoestand. **Bepaal** de verhouding $\varepsilon_D / \varepsilon_M$ bij golflengte λ_{B1} , waar ε_D en ε_M staan voor de extinctie-coëfficiënten van respectievelijk D en M.
- **B.2** De extinctie van het gasmengsel bij golflengte λ_{B2} , gemeten vanuit de *y* 6pt richting, was A_{B2} zowel in de begintoestand ($l = l_{y0}$) als in de evenwichtstoestand ($l = l_y$). **Bepaal** de verhouding $\varepsilon_D / \varepsilon_M$ bij golflengte λ_{B2} .

Lambert-Beer Law?

8 % of the total						
Question A.1 B.1 B.2 Total						
Points 10 6 6 22						
Score						

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution **X** was prepared using HA and NaA. The concentrations [A⁻], [HA], and [H⁺] in solution **X** are 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹, and 1.00×10^{-4} mol L⁻¹, respectively, which are correlated via the following acid-base equilibrium:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

The optical path length is *l* in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of **X** was A_1 at a wavelength of λ_1 . Then, solution **X** was diluted 10pt to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1 . **Determine** the ratio $\varepsilon_{HA}/\varepsilon_{A^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A⁻, respectively, at λ_1 .

Part B

Let us consider the following equilibrium in the gas phase.

$$D \rightleftharpoons 2M$$
 (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of S (see the figure below) at a pressure P, and equilibrium is established while the total pressure is kept at P. The absorbance of the gas is $A = \varepsilon(n/V)l$, where ε , n, V, and l are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

	Initia	state	After equilibrium		
	D M		D	М	
Partial pressure	Р	0	p_{D}	p_{M}	
Amount in moles	n_0	0	n _D	n_{M}	
Volume	V_0		I	7	

- **B.1** The absorbance of the gas at λ_{B1} measured from direction x ($l = l_x$) was A_{B1} 6pt both at the initial state and after the equilibrium. **Determine** the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B1} , where ε_D and ε_M represent the absorption coefficients of D and of M, respectively.
- **B.2** The absorbance of the gas at λ_{B2} measured from direction y was A_{B2} both at the initial state ($l = l_{y0}$) and after the equilibrium ($l = l_y$). **Determine** the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B2} .

A3-1 Nederlands (Netherlands)

Wet van Lambert-Beer?

NLD-3 C-3 A-1

Onderdeel A

A.1 (10 pt)

(Ga verder op de volgende pagina)

A.1 (cont.)	
$arepsilon_{HA}/arepsilon_{A^-} =$	

Onderdeel B

B.1 (6 pt)

 $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

B.2 (6 pt) $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

NLD-3 C-3 A-4

NLD-3 C-4 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Redoxchemie van zink

	11% van het totaal						
Vraag	/raag A.1 A.2 B.1 B.2 B.3 B.4 Totaa						
Punten	6	5	4	3	5	9	32
Score							

Zink wordt al lang gebruikt in legeringen als messing en voor staal. Het zink dat voorkomt in afvalwater wordt daaruit afgescheiden door middel van neerslagvorming. Zo wordt het water gezuiverd en de verkregen vaste stof wordt gereduceerd zodat zink als metaal wordt teruggewonnen en kan worden hergebruikt.

Onderdeel A

De evenwichten die betrokken zijn bij het oplossen van $Zn(OH)_2(s)$ bij 25 °C en de relevante evenwichtsconstanten zijn gegeven in de vergelijkingen 1–4.

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \qquad \qquad K_{\operatorname{sp}} = 1.74 \times 10^{-17}$$
 (1)

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq}) \qquad K_1 = 2.62 \times 10^{-6}$$
 (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq) \qquad K_2 = 6.47 \times 10^{-2}$$
(3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

De oplosbaarheid, *S*, van zink (concentratie van zink in een verzadigde oplossing) is gegeven in vergelijking 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** Er is een pH-bereik waarin van de concentraties $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ en 6pt $[Zn(OH)_4^{2-}(aq)]$ die van $[Zn(OH)_2(aq)]$ het grootst is, wanneer de evenwichten van de vergelijkingen 1–4 zich hebben ingesteld. **Bereken** dat pH-bereik.
- **A.2** Een verzadigde oplossing van $Zn(OH)_2(s)$ met pH = 7.00 werd gemaakt en gefilterd. NaOH werd toegevoegd aan het filtraat zodat de pH tot 12.00 werd verhoogd. **Bereken** het molaire percentage van zink dat neerslaat wanneer de pH wordt verhoogd van 7.00 tot 12.00. Verwaarloos hierbij veranderingen in volume en temperatuur.

Onderdeel B

Vervolgens wordt het teruggewonnen zinkhydroxide verhit om zo zinkoxide te verkrijgen via onderstaande reactie:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

Het zinkoxide wordt daarna gereduceerd tot het metaal zink door de reactie met waterstof:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g) \tag{7}$$

B.1 Om ervoor te zorgen dat reactie (7) verloopt bij een waterstofdruk die op 1 bar 4pt wordt gehouden, is het noodzakelijk de partiële druk van de waterdamp die ontstaat te verminderen. **Bereken** de bovengrens van de partiële druk van waterdamp om reactie (7) bij 300 °C te laten verlopen. Gebruik hierbij de Gibbs vormingsenergieën van zinkoxide en van waterdamp bij 300 °C en 1 bar voor de gasvormige stoffen: $\Delta G_{ZnO}(300^{\circ}C) = -2.90 \times 10^2 \text{ kJ mol}^{-1}$ en $\Delta G_{H_2O}(300^{\circ}C) = -2.20 \times 10^2 \text{ kJ mol}^{-1}$.

Het metaal zink wordt gebruikt als materiaal voor de negatieve elektrode (anode) voor metaal-lucht batterijen. De elektrode bestaat uit Zn en ZnO. De onderstaande redoxreactie wordt gebruikt om elektriciteit te produceren met de elektromotorische kracht (bronspanning, e.m.k.), bij 25 °C en een druk van 1 bar, E° .

$$Zn(s) + \frac{1}{2}O_2(g) \to ZnO(s)$$
 $E^{\circ} = 1.65 V$ (8)

B.2 Een zink–lucht batterij werd gedurende 24 uur ontladen bij een stroomsterkte 3pt van 20 mA. <u>Bereken</u> de massaverandering van de negatieve elektrode (anode) van de batterij.

NLD-3 C-4 Q-3

B.3 We beschouwen nu de verandering van de de e.m.k van een zink-lucht batterij 5pt afhankelijk van de omgeving. <u>Bereken</u> de e.m.k. op de top van de berg Fuji, waar de temperatuur en hoogte respectievelijk –38 °C (februari) en 3776 m zijn. De atmosferische druk wordt weergegeven door de volgende vergelijking:

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

bij hoogte h [m] en temperatuur T [°C]. Het molaire peercentage van zuurstof in de atmosfeer is 21%. De verandering van de Gibbs energie voor reactie (8) is $\Delta G_{ZnO}(-38^{\circ}C) = -3.26 \times 10^{2} \text{ kJ mol}^{-1}$ bij $-38^{\circ}C$ en 1 bar.

B.4 <u>Bereken</u> de verandering van de Gibbs energie voor reactie (6) bij $25 \degree$ C. De standaardelektrodepotentialen, $E^{\circ}(Zn^{2+}/Zn)$ en $E^{\circ}(O_2/H_2O)$ bij $25 \degree$ C en 1 bar zijn respectievelijk gegeven als (10) en (11).

$$Zn^{2+} + 2e^- \rightarrow Zn$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

The Redox Chemistry of Zinc

	11 % of the total						
Question A.1 A.2 B.1 B.2 B.3 B.4 Tota						Total	
Points	6	5	4	3	5	9	32
Score							

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $Zn(OH)_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \qquad K_{\operatorname{sp}} = 1.74 \times 10^{-17}$$
 (1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq) \qquad K_2 = 6.47 \times 10^{-2}$$
(3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

The solubility, *S*, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** When the equilibria in eq. 1–4 are established, <u>calculate</u> the pH range 6pt in which $[Zn(OH)_2(aq)]$ is the greatest among $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ and $[Zn(OH)_4^{2-}(aq)]$.
- **A.2** A saturated aqueous solution of $Zn(OH)_2(s)$ with pH = 7.00 was prepared and 5pt filtered. NaOH was added to this filtrate to increase its pH to 12.00. <u>Calculate</u> the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. <u>Calculate</u> the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{ZnO}(300^{\circ}C) =$ -2.90×10^{2} kJ mol⁻¹ and $\Delta G_{H_{2}O}(300^{\circ}C) = -2.20 \times 10^{2}$ kJ mol⁻¹, respectively.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E° .

$$\operatorname{Zn}(\mathbf{s}) + \frac{1}{2}\operatorname{O}_{2}(\mathbf{g}) \to \operatorname{ZnO}(\mathbf{s})$$
 $E^{\circ} = 1.65 \,\mathrm{V}$ (8)

B.2 A zinc–air battery was discharged at 20 mA for 24 hours. <u>Calculate</u> the change 3pt in mass of the negative electrode (anode) of the battery.

Mt. Fuji

B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environ- 5pt ment. <u>Calculate</u> the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are -38 °C (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

at altitude h [m] and temperature T [°C]. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{ZnO}(-38^{\circ}C) = -3.26 \times 10^2 \text{ kJ mol}^{-1}$ at $-38^{\circ}C$ and 1 bar.

B.4 <u>**Calculate**</u> the Gibbs energy change for reaction (6) at $25 \degree$ C. Note that the standard reduction potentials, $E^{\circ}(Zn^{2+}/Zn)$ and $E^{\circ}(O_2/H_2O)$ at $25\degree$ C and 1 bar are given as (10) and (11), respectively.

 $Zn^{2+} + 2e^- \rightarrow Zn$ $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

Redoxchemie van zink

Onderdeel A

A.1 (6 pt)

< pH <

A.2 (5 pt)	
%	

Onderdeel B

B.1 (4 pt)			
<i>n</i> u o	bar		
$PH_2O=$		 	
B.2 (3 pt)	g		

B.3 (5 pt)	
<u>V</u>	

B.4 (9 pt)

J mol⁻¹ $\Delta G^{\circ} =$

NLD-3 C-5 C-1

NLD-3 C-5 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

NLD-3 C-5 Q-1

Mysterieus silicium

12% van het totaal								
Vraag	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Totaal
Punten	9	7	6	10	5	15	8	60
Score								

Hoewel silicium, net als koolstof, een element uit groep 14 is, heeft het heel andere eigenschappen.

Onderdeel A

In tegenstelling tot de koolstof-koolstof drievoudige binding is de silicium-silicium drievoudige binding (geformuleerd als R^1 -Si \equiv Si- R^1 met R een organische substituent) extreem reactief. Het reageert bijvoorbeeld met etheen waarbij een cyclisch product met een vierring gevormd wordt.

Als R^1 –Si \equiv Si– R^1 behandeld wordt met een alkyn (R^2 –C \equiv C– R^2) wordt als eerste tussenproduct de verbinding **A** gevormd. **A** bestaat uit moleculen met een vierring. Verdere reactie van een ander molecuul R^2 –C \equiv C– R^2 met **A** levert isomeren **B** en **C** op, die beide benzeenachtige cyclische geconjugeerde structuren hebben. Deze zogenoemde 'disilabenzenen' bevatten een zesring en kunnen opgeschreven worden als $(R^1$ –Si)₂ $(R^2$ –C)₄.

NLD-3 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

De ¹³C NMR analyse van de overeenkomstige zesringskeletten Si_2C_4 toont twee signalen voor **B** en één signaal voor **C**.

- **A.1** <u>**Teken**</u> de structuurformules van **A**, **B**, en **C**. Gebruik hierbij R¹, R², Si en C. Geef 9pt van elke structuurformule één mogelijke resonantiestructuur.
- **A.2 Bereken** de aromatische stabilisatie-energie (ASE) van benzeen en **C** (voor het geval $R^1 = R^2 = H$) als positieve getallen. Gebruik hierbij de enthalpieveranderingen van enkele hydrogenering-reacties van onverzadigde systemen, die hieronder gegeven zijn in Figuur 1.

10pt

Als een oplossing van **C** in xyleen wordt verhit, ondergaat het isomerisatie. Er ontstaat een evenwichtsmengsel van verbindingen **D** en **E**. De molverhouding is **D** : **E** = 1 : 40.0 bij 50.0 °C en **D** : **E** = 1 : 20.0 bij 120.0 °C.

A.3 Bereken ΔH voor de omzetting van **D** naar **E**. Neem aan dat ΔH niet afhankelijk 6pt is van temperatuur.

De isomerisatie van **C** naar **D** en naar **E** gaat door middel van omzettingen van π -bindingen naar σ bindingen zonder dat σ -bindingen worden verbroken. Een ¹³C NMR analyse liet één signaal voor het Si₂C₄ skelet van **D** zien en twee signalen voor dat van **E**. Het skelet van **D** bevat geen drieringen, maar **E** heeft twee drieringen die een zijde delen.

A.4 Teken de structuurformules van **D** en **E** en gebruik daarbij R¹, R², Si en C.

Onderdeel B

Silicium kan hooggecoördineerde verbindingen (meer dan vier substituenten) vormen met elektronegatieve elementen zoals fluor. Net als metaalfluorides, die vaak gebruikt worden als fluoreringreagentia, kunnen hooggecoördineerde siliciumfluorides ook als fluoreringreagentia fungeren.

De fluoreringreactie van CCI_4 met Na_2SiF_6 werd als volgt uitgevoerd.

• Standaardisatie van Na₂SiF₆-oplossing:

Voorbereiding

Waterige oplossing **F**: 0.855 g Na₂SiF₆ (188.053 g mol⁻¹) opgelost in water (totaalvolume: 200 mL).

Waterige oplossing **G**: 6.86 g Ce₂(SO₄)₃ (568.424 g mol⁻¹) opgelost in water (totaalvolume: 200 mL).

· Procedure

Neerslagtitratie van oplossing **F** (50.0 mL) door druppelsgewijze toevoeging van oplossing **G** in aanwezigheid van xylenoloranje, wat coördineert met Ce³⁺, als indicator. Na 18.8 mL van oplossing **G** toegevoegd te hebben verandert de kleur van de oplossing van geel naar magenta. Het gevormde neerslag is een binaire verbinding die Ce³⁺ bevat. De enige gevormde siliciumverbinding is Si(OH)₄.

B.1	<u>Geef</u> de vergelijking voor de reactie van Na_2SiF_6 met $Ce_2(SO_4)_3$.	5pt
-----	---	-----

• Reactie van CCl₄ met Na₂SiF₆:

(Verliezen door bijv. verdamping zijn verwaarloosbaar tijdens de volgende handelingen.)

Na₂SiF₆ (*x* [g]) werd toegevoegd aan CCl₄ (500.0 g) en verwarmd tot 300 °C in een afgesloten drukbestendig reactievat. Het ongereageerde Na₂SiF₆ en gevormde NaCl werden verwijderd door filtratie. Het filtraat werd verdund tot een totaalvolume van 1.00 L met CCl₄ (oplossing **H**). De ²⁹Si en ¹⁹F NMR spectra van oplossing **H** lieten zien dat SiF₄ de enige siliciumverbinding was. Bovendien waren in het ¹⁹F NMR spectrum signalen van CFCl₃, CF₂Cl₂, CF₃Cl, en CF₄ te zien (zie Tabel 1). De integratieverhoudingen in het ¹⁹F NMR spectrum zijn recht evenredig met het aantal fluorkernen.

NLD-3 C-5 Q-4

Tabel 1						
¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integratieverhouding	45.0	65.0	18.0	2.0		

 SiF_4 kan gehydrolyseerd worden om H_2SiF_6 te vormen volgens vergelijking 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

Oplossing **H** (10 mL) werd toegevoegd aan een overmaat water, wat leidde tot de complete hydrolyse van SiF₄. Na scheiding werd de bij de hydrolyse gevormde H_2SiF_6 in de waterige oplossing geneutraliseerd en volledig omgezet tot Na₂SiF₆ (waterige oplossing **J**).

Het neerslag van ongereageerd Na_2SiF_6 en NaCl, dat na de eerdere reactie door filtratieverwijderd was (onderstreept; zie vorige pagina), werd volledig opgelost in water, wat een waterige oplossing opleverde (oplossing **K**; 10.0 L).

Daarna werden extra neerslagtitraties uitgevoerd met oplossing G, en de eindpunten van de titraties met G waren als volgt:

•Voor oplossing **J** (volledige hoeveelheid): 61.6 mL.

·Voor 100 mL van oplossing **K**: 44.4 mL.

Hierbij dient te worden opgemerkt dat het gelijktijdig aanwezig zijn van NaCl of SiO₂ geen effect heeft op de neerslagtitratie.

- **B.2** <u>Bereken</u> de massa van de NaCl geproduceerd in het reactievat (zie de onderstreepte informatie op de vorige pagina), en <u>bereken</u> de massa (*x* [g]) van de Na₂SiF₆ gebruikt als beginstof.
- **B.3** 77.8% van de CCl_4 gebruikt als beginstof had niet gereageerd. **Bereken** de massavan het gevormde CF_3Cl .

Mysterious Silicon

12 % of the total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Points	9	7	6	10	5	15	8	60
Score								

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as $R^1-Si \equiv Si-R^1$ (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

When $R^1-Si \equiv Si-R^1$ is treated with an alkyne ($R^2-C \equiv C-R^2$), the four-membered-ring compound **A** is formed as an initial intermediate. Further reaction of another molecule of $R^2-C \equiv C-R^2$ with **A** affords isomers **B** and **C**, both of which have benzene-like cyclic conjugated structures, so-called 'disilabenzenes' that contain a six-membered ring and can be formulated as $(R^1-Si)_2(R^2-C)_4$.

NLD-3 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

The ¹³C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for **B** and one signal for **C**.

- **A.1 Draw** the structural formulae of **A**, **B**, and **C** using R¹, R², Si, and C, with one of 9pt the possible resonance structures.
- **A.2** <u>**Calculate**</u> the aromatic stabilization energy (ASE) for benzene and **C** (in the case of $R^1 = R^2 = H$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

When a xylene solution of **C** is heated, it undergoes isomerization to give an equilibrium mixture of compounds **D** and **E**. The molar ratio is **D** : **E** = 1 : 40.0 at 50.0 °C and **D** : **E** = 1 : 20.0 at 120.0 °C.

A.3 Calculate ΔH for the transformation of **D** to **E**. Assume that ΔH does not depend on temperature.

The isomerization from **C** to **D** and to **E** proceeds via transformations of π -bonds into σ -bonds without breaking any σ -bonds. A ¹³C NMR analysis revealed one signal for the Si₂C₄ skeleton of **D** and two signals for that of **E**. The skeleton of **D** does not contain any three-membered rings, while **E** has two three-membered rings that share an edge.

A.4 Draw the structural formulae of **D** and **E** using R¹, R², Si, and C.

10pt

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl_4 using Na_2SiF_6 was carried out as follows.

• Standardization of Na₂SiF₆ solution :

· Preparation

Aqueous solution **F**: 0.855 g of Na₂SiF₆ (188.053 g mol⁻¹) dissolved in water (total volume: 200 mL).

Aqueous solution **G**: 6.86 g of $Ce_2(SO_4)_3$ (568.424 g mol⁻¹) dissolved in water (total volume: 200 mL).

· Procedure

Precipitation titration of a solution **F** (50.0 mL) by dropwise adding solution **G** in the presence of xylenol orange, which coordinates to Ce^{3+} , as an indicator. After adding 18.8 mL of solution **G**, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce^{3+} , and the only resulting silicon compound is Si(OH)₄.

B.1 <u>Write</u> the balanced equation for the reaction of Na_2SiF_6 with $Ce_2(SO_4)_3$. 5pt

• Reaction of CCl₄with Na₂SiF₆:

(Substance losses by e.g. evaporation are negligible during the following operations.)

Na₂SiF₆(*x* [g]) was added to CCl₄ (500.0 g) and heated to 300 °C in a sealed pressure-resistant reaction vessel. The unreacted Na₂SiF₆ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl₄ (solution **H**). The ²⁹Si and ¹⁹F NMR spectra of solution **H** showed SiF₄ as the only silicon compound. In the ¹⁹F NMR spectrum, in addition to SiF₄, signals corresponding to CFCl₃, CF₂Cl₂, CF₃Cl, and CF₄ were observed (*cf.* Table 1). The integration ratios in the ¹⁹F NMR spectrum are proportional to the number of fluorine nuclei.

¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integration ratio	45.0	65.0	18.0	2.0		

Table 1

NLD-3 C-5 Q-4

 SiF_4 is hydrolyzed to form H_2SiF_6 according to the following eq. 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

Solution **H** (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H_2SiF_6 generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na_2SiF_6 (aqueous solution **J**).

The precipitate of unreacted Na_2SiF_6 and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution **K**; 10.0 L).

Then, additional precipitation titrations using solution **G** were carried out, and the endpoints of the titrations with **G** were as follows:

•For solution **J** (entire amount): 61.6 mL.

•For 100 mL of solution **K**: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

- **B.2** <u>**Calculate**</u> the mass of the NaCl produced in the reaction vessel (information 15pt underlined), and <u>**calculate**</u> the mass (x [g]) of the Na₂SiF₆ used as a starting material.
- **B.3** 77.8% of the CCl_4 used as a starting material was unreacted. <u>Calculate</u> the mass 8pt of CF_3Cl generated.

A5-1 Nederlands (Netherlands)

NLD-3 C-5 A-1

Mysterieus silicium

Onderdeel A

A.1 (9 pt)			
A (3 pt)	B (3 pt)	C (3 pt)	

A.2 (7 pt)

C₆H₆ : kJ mol⁻¹, **C** : kJ mol⁻¹

A.3 (6 pt)				
$\Delta H =$	kj mol ⁻¹			
A.4 (10 pt)				
	D (5 pt)	E (5 pt)		

Onderdeel B

B.1 (5 pt)

B.2 (15 pt)

(Gaat op de volgende pagina verder)

B.2 (cont.)			
NaCI :	g, Na ₂ SIF ₆ :	<u>g</u>	

B.3 (8 pt)

 $CF_3CI:$ g

NLD-3 C-6 C-1

NLD-3 C-6 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

De Vastestofchemie van Overgangsmetalen

	13% van het totaal										
Vraag	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Totaal
Punten	6	3	3	6	4	4	4	5	5	5	45
Score											

Vulkaan op het eiland Sakurajima

Onderdeel A

Japan is wereldwijd een van de landen met het grootste aantal vulkanen. Wanneer silicaten kristalliseren vanuit magma, wordt een deel van de overgangsmetaal-ionen (M^{n+}) in het magma opgenomen in de silicaten. De onderzochte M^{n+} in deze opgave zijn gecoördineerd door oxide-ionen (O^{2-}). De M^{n+} nemen een vier-gecoördineerde tetraëdische (T_d) geometrie aan in het magma en een zes-gecoördineerde octaëdrische (O_h) geometrie in de silicaten. Beide vertonen een hoogspin elektronenconfiguratie.

De verdelingsconstante van de verdeling van M^{n+} tussen de silicaten en het magma, D, kan als volgt worden weergegeven:

$$D = \frac{[M]_s}{[M]_1}$$

Hierin zijn $[M]_s$ en $[M]_l$ de concentraties van M^{n+} in respectievelijk de silicaten en het magma. In de tabel hieronder staan als voorbeeld, de waarden van D van Cr^{2+} en Mn^{2+} .

NLD-3 C-6 Q-2

Stel dat Δ_0 en CFSE^O de energieverschillen zijn van respectievelijk de d-orbitalen van Mⁿ⁺ en de kristalveld-stabilisatie-energie in een O_h veld. Stel dat Δ_T en CFSE^T deze waarden zijn in een T_d veld.

A.1 <u>**Bereken**</u> $|CFSE^O - CFSE^T| = \Delta CFSE$ uitgedrukt in Δ_O voor Cr^{2+} , Mn^{2+} en Co^{2+} . 6pt Neem aan dat $\Delta_T = 4/9\Delta_O$.

Metaaloxiden MO (M: Ca, Ti, V, Mn of Co) kristalliseren in een steenzout structuur waarin de M^{n+} een O_h geometrie aanneemt met een hoogspin elektronenconfiguratie. De roosterenthalpie van deze oxiden wordt voornamelijk bepaald door de Coulomb-interactie, gebaseerd op de straal en lading van de ionen, en een aantal bijdragen van de CFSE van M^{n+} in het O_h veld.

0.2

 $\Delta CFSE / \Delta_0$

0

0.1

0.3

0.4

0.5

A.3	Kies de juiste set rooster-enthalpieën [kJ mol ^{–1}] uit één van de opties (a) tot en	3pt
	met (f).	

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Q6-3 Nederlands (Netherlands)

NLD-3 C-6 Q-3

NLD-3 C-6 Q-4

Onderdeel B

Een gemengd oxide **A** dat La³⁺ en Cu²⁺ bevat, kristalliseert in een tetraëdische eenheidscel, zie Fig. 1. In de [CuO₆] octaëder is de Cu–O lengte langs de *z*-as (l_z) langer dan die langs de *x*-as (l_x) en [CuO₆] is vervormd in vergelijking met de normale O_h geometrie. Deze vervorming verwijdert de degeneratie van de e_a orbitalen ($d_{x^2-y^2}$ en d_{z^2}).

A kan worden gesynthetiseerd door thermische ontleding (pyrolyse) van complex **B**, dat gevormd is door het mengen van metaalchloriden in een verdunde waterige ammoniak-oplossing die kwadraatzuur $C_4H_2O_4$, d.w.z. een dizuur, bevat. De pyrolyse-eigenschappen van **B** in droge lucht laten een massa-afname zien van 29.1% tot 200 °C veroorzaakt door het verlies van kristalwater, gevolgd door wederom een massa afname tot 700 °C veroorzaakt door het vrijkomen van CO_2 . De totale massa afname gedurende de vorming van **A** uit **B** is 63.6%. Tijdens de pyrolyse reactie komen alleen water en CO_2 vrij.

B.1	<u>Geef</u> de formules van A en B .	6pt
B.2	<u>Bereken</u> l_x en l_z met behulp van Fig. 1.	4pt
B.3	Voer de volgende opdrachten uit voor Cu^{2+} in de vervormde $[CuO_6]$ octaëder in A in Fig. 1: • Schrijf de namen van de gesplitste e_g orbitalen $(d_{x^2-y^2} en d_{z^2})$ bij (i) en (ii) en; • Teken de elektronenconfiguratie in het gestippelde vak op je antwoordblad.	4pt

Q6-5 Nederlands (Netherlands)

NLD-3 C-6 Q-5

A is een isolator. Wanneer één La³⁺ gesubstitueerd wordt door één Sr²⁺, ontstaat er één gat in het kristalrooster dat elektrische stroom kan geleiden. Hierdoor is Sr²⁺-gedoteerd **A** een supergeleider onder 38K. Bij een substitutiereactie van **A** zijn 2.05×10^{27} gaten m⁻³ ontstaan.

 B.4 Bereken met behulp van de molverhouding in de substitutiereactie het percentage La³⁺ dat gesubstitueerd is door Sr²⁺
 NB: de valenties van de andere ionen en de kristalstructuur veranderen niet tijdens de substitutiereactie.

Onderdeel C

 $Cu_2(CH_3CO_2)_4$ bestaat uit vier $CH_3CO_2^-$ gecoördineerd met twee Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ heeft een hoge mate van structuursymmetrie, met twee assen die door de koolstofatomen van de vier $CH_3CO_2^-$ lopen en een as die door de twee Cu^{2+} loopt. Alle assen staan loodrecht ten opzichte van elkaar. Wanneer een dicarboxylaatligand gebruikt wordt in plaats van $CH_3CO_2^-$, ontstaat er een "kooicomplex". Het kooicomplex $Cu_4(L1)_4$ bestaat uit vlak dicarboxylaat L1 (Fig. 2B) en Cu^{2+} (Fig. 2C). De hoek θ tussen de coördinatierichtingen van de twee carboxylaatgroepen, aangegeven met de pijlen in Fig. 2B, bepaalt de structuur van het kooicomplex. De θ is 0° bij L1. NB: de waterstofatomen zijn niet weergegeven in Fig. 2.

Fig. 2

NLD-3 C-6 Q-6

Een zinkcomplex, $Zn_4O(CH_3CO_2)_6$, bevat vier tetraëdische Zn^{2+} , zes $CH_3CO_2^-$ en één O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$ bevindt O^{2-} zich in de oorsprong en de drie assen die door de koolstofatomen van $CH_3CO_2^-$ lopen, staan loodrecht ten opzichte van elkaar. Wanneer *p*-benzeendicarboxylaat (Fig. 3B, **L3**, θ = 180°) gebruikt wordt in plaats van $CH_3CO_2^-$, koppelen de Zn^{2+} clusters aan elkaar waarbij ze een kristallijne vaste stof (**X**) vormen, genaamd "poreus coördinatie polymeer" (Fig. 3C). De samenstelling van **X** is $[Zn_4O(L3)_3]_n$ en het heeft een kubische kristalstructuur met nano-formaat poriën. Een porie wordt weergegeven als een bol in Fig. 3D en elk tetraëdisch Zn^{2+} cluster wordt weergegeven als een donkergrijs veelvlak in Fig. 3C en 3D. Merk op de de waterstofatomen niet zijn weergegeven in Fig. 3.

- **C.2 X** heeft een kubische eenheidscel waarvan de lengte van de ribbe gelijk is aan 5pt a (Fig. 3C). De dichtheid van **X** is 0.592 g cm⁻³. **Bereken** a in [cm].
- **C.3 X** bevat een aanzienlijk aantal poriën en bij 1 bar en 25 °C kan 1 g **X** 3.0×10^2 mL 5pt CO₂ gas bevatten in de poriën . **Bereken** het gemiddelde aantal CO₂ moleculen per porie.

The Solid-State Chemistry of Transition Metals

	13 % of the total										
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Total
Points	6	3	3	6	4	4	4	5	5	5	45
Score											

Volcano at Sakurajima island

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M^{n+}) in the magma is incorporated into the silicate minerals. The M^{n+} studied in the problem are coordinated by oxide ions (O^{2-}) and adopt a four-coordinate tetrahedral (T_d) geometry in the magma and six-coordinate octahedral (O_h) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M^{n+} between the silicate minerals and magma, D, can be expressed by:

$$D = \frac{[M]_s}{[M]_1}$$

where $[M]_s$ and $[M]_l$ are the concentrations of M^{n+} in the silicate minerals and the magma, respectively. The table below shows the D values of Cr^{2+} and Mn^{2+} as examples.

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

Let Δ_0 and CFSE^O be the energy separation of the d-orbitals of Mⁿ⁺ and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

- **A.1** <u>**Calculate**</u> $|CFSE^O CFSE^T| = \Delta CFSE$ in terms of Δ_O for Cr^{2+} , Mn^{2+} , and Co^{2+} ; 6pt assume $\Delta_T = 4/9\Delta_O$.
- A.2 A linear relationship is observed by plotting $\ln D$ against $\Delta CFSE / \Delta_0$ in the Carte- 3pt sian coordinate system shown below. Estimate D for Co^{2+} .

0

0.1

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

0.2 0.3

 $\Delta CFSE / \Delta_{O}$

0.4

0.5

A.3 <u>**Choose**</u> the appropriate set of lattice enthalpies $[k] \mod^{-1}$ from one of the op- 3pt tions (a) to (f).

3460	3878	3913	3810	3916
3460	3916	3878	3810	3913
3460	3913	3916	3810	3878
3810	3878	3913	3460	3916
3810	3916	3878	3460	3913
3810	3913	3916	3460	3878
	3460 3460 3460 3810 3810 3810	3460 3916 3460 3913 3460 3913 3810 3878 3810 3916 3810 3913	3460 3878 3313 3460 3916 3878 3460 3913 3916 3810 3878 3913 3810 3916 3878 3810 3913 3916 3810 3913 3916 3810 3913 3916	3460 3916 3878 3810 3460 3916 3878 3810 3460 3913 3916 3810 3460 3913 3916 3810 3810 3878 3913 3460 3810 3878 3913 3460 3810 3916 3878 3460 3810 3913 3916 3460

Part B

A mixed oxide **A**, which contains La³⁺ and Cu²⁺, crystallizes in a tetragonal unit cell shown in Fig.1. In the [CuO₆] octahedron, the Cu–O length along the *z*-axis (l_z) is longer than that of the *x*-axis (l_x), and [CuO₆] is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals (d_{x²-y²} and d_{z²}).

Fig. 1

A can be synthesized by thermal decomposition (pyrolysis) of complex **B**, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of **B** in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO_2 . The total weight loss during the formation of **A** from **B** is 63.6%. It should be noted that only water and CO_2 are released in the pyrolysis reaction.

B.1	Write the chemical formulae for A and B .	6pt
B.2	<u>Calculate</u> l_x and l_z using Fig. 1.	4pt
B.3	For Cu^{2+} in the distorted $[CuO_6]$ octahedron in A of Fig. 1, <u>write</u> the names of the split e_g orbitals $(d_{x^2-y^2}$ and $d_{z^2})$ in (i) and (ii), and <u>draw</u> the electron configuration in the dotted box in your answer sheet.	4pt

A is an insulator. When one La³⁺ is substituted with one Sr²⁺, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr²⁺-doped **A** shows superconductivity below 38 K. When a substitution reaction took place for **A**, 2.05×10^{27} holes m⁻³ were generated.

B.4 Calculate the percentage of Sr²⁺ substituted for La³⁺ based on the mole ratio 4pt in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

 $Cu_2(CH_3CO_2)_4$ is composed of four $CH_3CO_2^-$ coordinated to two Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four $CH_3CO_2^$ and an axis passing through the two Cu^{2+} , all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of $CH_3CO_2^-$, a "cage complex" is formed. The cage complex $Cu_4(L1)_4$ is composed of planar dicarboxylate L1 (Fig. 2B) and Cu^{2+} (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L1. Note that hydrogen atoms are not shown in Fig. 2.

Fig. 2

NLD-3 C-6 Q-5

A zinc complex, $Zn_4O(CH_3CO_2)_6$, contains four tetrahedral Zn^{2+} , six $CH_3CO_2^{-}$, and one O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of $CH_3CO_2^{-}$ are oriented orthogonal relative to each other. When *p*-benzenedicarboxylate (Fig. 3B, L3, $\theta = 180^\circ$) is used instead of $CH_3CO_2^{-}$, the Zn^{2+} clusters are linked to each other to form a crystalline solid (X) that is called a "porous coordination polymer" (Fig. 3C). The composition of X is $[Zn_4O(L3)_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

- **C.2 X** has a cubic unit cell with a side length of *a* (Fig. 3C) and a density of 0.592 5pt $g \text{ cm}^{-3}$. **Calculate** *a* in [cm].
- **C.3 X** contains a considerable number of pores, and 1 g of **X** can accommodate 5pt 3.0×10^2 mL of CO₂ gas in the pores at 1 bar and 25 °C. <u>Calculate</u> the average number of CO₂ molecules per pore.

A6-1 Nederlands (Netherlands)

NLD-3 C-6 A-1

De Vaststofchemie van Overgansmetalen

 A.1 (6 pt)

 Cr²⁺ :
 Δ₀, Mn²⁺ :
 Δ₀, Co²⁺ :
 Δ₀

. .

NLD-3 C-6 A-3

Deel C

C.1 (5 pt)	
<u>n =</u>	, <u>m =</u>

 $\textbf{C.2}~(5~\mathrm{pt})$

 $\underline{a} =$

cm

C.3 (5 pt)

NLD-3 C-7 C-1

NLD-3 C-7 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Spelen met niet-benzeenachtige aromaticiteit

13% van het totaal							
Vraag	A.1	A.2	A.3	B.1	Totaal		
Punten	5	2	19	10	36		
Score							

Professor Nozoe (1902-1996) startte met het onderzoek omtrent niet-benzeenachtige aromatische verbindingen, die nu veelvoorkomend zijn in de organische chemie.

Foto geleverd door: Tohoku universiteit

Onderdeel A

Lineariifolianone is een natuurproduct met een unieke structuur, dat geïsoleerd kan worden uit *Inula linariifolia*. Men kan via een één-staps synthese valencene (**1**) omzetten tot **2** dat na een drie-staps synthese via **3** uiteindelijk keton **4** oplevert. Eremophilene (**5**) wordt omgezet tot **6** door dezelfde vier synthesestappen uit te voeren.

NLD-3 C-7 Q-2

Inula linariifolia

A.1 <u>Teken</u> de structuurformules van **2** en **6**. Laat, waar nodig, de stereochemie dui- 5pt delijk uitkomen.

Daarna wordt keton **4** omgezet tot ester **15**. Verbinding **8** (molecuulmassa: 188 u) behoudt dezelfde stereochemie als **7**. Verbindingen **9** en **10** hebben 5 stereocentra en geen koolstof-koolstof dubbele bin-

dingen. Ga ervan uit dat H_2^{18} O in plaats van H_2^{16} O gebruikt wordt voor de synthese van ¹⁸O-gelabelde lineariifolianonen **13** en **14** uit respectievelijk **11** en **12**. De verbindingen **13** en **14** zijn ¹⁸O- gelabelde isotopomeren. Als men afziet van isotooplabels, leveren **13** en **14** beide hetzelfde product (**15)** op met identieke stereochemie.

Onderdeel B

Verbinding **19** wordt gesynthetiseerd zoals hieronder is weergegeven. In het onderzoeksveld van de niet-benzeenachtige aromaticiteit kan **19** gebruikt worden als een activator voor alcoholen. Verbinding **20** werd omgezet tot **22** via het ion-paar intermediair **21**. Hoewel de vorming van **21** werd aangetoond, gebruikmakend van NMR, ontleedt **21** geleidelijk waarbij **18** en **22** gevormd worden.

B.1 <u>**Teken**</u> de structuurformules van **17-19** en **21**. Het is niet nodig om de stereo- 10pt chemie weer te geven.

Playing with Non-benzenoid Aromaticity

13 % of the total								
Question	A.1	A.2	A.3	B.1	Total			
Points	5	2	19	10	36			
Score								

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Photo courtesy: Tohoku Univ.

Part A

Lineariifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields **2**, before a three-step conversion via **3** yields ketone **4**. Eremophilene (**5**) is converted into **6** by performing the same four-step conversion.

Inula linariifolia

A.1 Draw the structures of **2** and **6** and clearly identify the stereochemistry where 5pt necessary.

Then, ketone **4** is converted into ester **15**. Compound **8** (molecular weight: 188) retains all the stereocenters in **7**. Compounds **9** and **10** have five stereocenters and no carbon-carbon double bonds. Assume

that $H_2^{18}O$ is used instead of $H_2^{16}O$ for the synthesis of ¹⁸O-labelled-lineariifolianones **13** and **14** from **11** and **12**, respectively. Compounds **13** and **14** are ¹⁸O-labelled isotopomers. Ignoring isotopic labelling, both **13** and **14** provide the same product **15** with identical stereochemistry.

Part B

Compound **19** is synthesized as shown below. In relation to non-benzenoid aromaticity, **19** can be used as an activator for alcohols, and **20** was converted to **22** via ion-pair intermediate **21**. Although the formation of **21** was observed by NMR, **21** gradually decomposes to give **18** and **22**.

B.1 Draw the structures of **17–19** and **21**. Identifying the stereochemistry is not 10pt necessary.

A7-1 Nederlands (Netherlands)

Spelen met niet-benzeenachtige aromaticiteit

Onderdeel A

2 (2 pt)	6 (3 pt)	

NLD-3 C-7 A-1

A.2 (2 pt)

NLD-3 C-7 A-2

NLD-3 C-7 A-3

Onderdeel B

17 (2 pt)	18 (2 pt)	
19 (3 pt)	21 (3 pt)	

NLD-3 C-8 C-1

NLD-3 C-8 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Dynamische Organische Moleculen en hun Chiraliteit

11% van het totaal						
Vraag	A.1	A.2	A.3	B.1	B.2	Totaal
Punten	9	3	7	3	4	26
Score						

Onderdeel A

Polycyclische aromatische koolwaterstoffen met opeenvolgende ortho-bindingen worden [n]carbohelicenen genoemd (n is het aantal zesringen) (zie hieronder). [4]Carbohelicene (**[4]C**) wordt efficiënt bereid via een route waarbij de onderstaande fotoreactie gebruikt wordt, via een intermediair (**Int.**) dat gemakkelijk door jood geoxideerd wordt.

De fotoreactie vindt plaats op een wijze die lijkt op het volgende voorbeeld.

NLD-3 C-8 Q-2

Opmerking: Teken in de gehele opgave 8 alternerende enkele en dubbele bindingen in je antwoorden, zoals te zienis in de voorbeeldafbeeldingen van carbohelicene. Gebruik geen cirkels voor geconjugeerde π systemen.

- **A.1** <u>**Teken**</u> de structuurformules van **A–C**. Maak hierbij onderscheid tussen stereo- 9pt isomeren.
- **A.2** Pogingen om [5]carbohelicene te synthetiseren uit hetzelfde fosfoniumzout en een geschikte beginstof resulteerde nauwelijks in de vorming van [5]carbohelicene. In plaats daarvan werd product **D** gevormd met een molecuulmassa die 2 Da lager was dan die van [5]carbohelicene. De ¹H NMR chemische verschuivingen van **D** zijn hieronder gegeven. <u>Teken</u> de structuurformule van **D**. [**D** (δ , ppm in CS₂, kamertemperatuur), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- en grotere [n]carbohelicenen hebben helische chiraliteit en de overgang tussen enantiomeren van deze helicenen is langzaam bij kamertemperatuur. De chiraliteit van [n]carbohelicenen wordt aangegeven met (*M*) of (*P*) zoals hieronder is weergegeven.

Voor [n]carbohelicenen met n groter dan 4 kunnen de enantiomeren gescheiden worden door middel van chirale kolomchromatografie, ontwikkeld door Prof. Yoshio Okamoto.

Foto met dank aan: The Japan Prize Foundation

NLD-3 C-8 Q-3

Meervoudige helicenen zijn moleculen die twee of meer heliceen-achtige structuurelementen bevatten. Als de helische chiraliteit in beschouwing wordt genomen, heeft een meervoudig heliceen een aantal stereo-isomeren. Bijvoorbeeld, verbinding **E** bevat drie [5]carboheliceenachtige eenheden in een molecuul. Een van de stereo-isomeren is beschreven als (*P*, *P*, *P*), zoals hieronder afgebeeld.

A.3 Onder invloed van een nikkelverbinding trimeriseert 1,2-dibroombenzeen tot trifenyleen. Wanneer dezelfde reactie wordt uitgevoerd met een enantiomeer van **F**, (*P*)-**F**, wordt het meervoudige heliceen **G** ($C_{66}H_{36}$) verkregen. Gegeven is dat de overgang tussen stereo-isomeren niet plaatsvindt gedurende de reactie. <u>Identificeer</u> alle mogelijke stereo-isomeren van **G** die gevormd worden in dit proces, zonder dubbelingen. Als referentie moet één isomeer volledig getekend worden met de chiraliteit zoals in bovenstaand voorbeeld, met genummerde labels. De andere stereo-isomeren moeten gegeven worden met plaatsnummers en labels voor *M* en *P*. Bijvoorbeeld, de overige stereo-isomeren van **E** zouden gegeven moeten worden als (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*M*, *M*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), en (*M*, *P*, *M*).

(*P*)-**F**

Q8-4 Nederlands (Netherlands)

NLD-3 C-8 Q-4

Onderdeel B

Sumanene is een komvormige koolwaterstof die voor het eerst in 2003 in Japan werd gerapporteerd. De naam "sumanene" is afgeleid van het woord "suman", dat in Sanskrit-Hindi voor zonnebloem staat. De synthese van sumanene werd bewerkstelligd door een reeks reacties bestaande uit ringopening en ringsluiting door middel van metathese.

Representatieve metathesereacties gekatalyseerd door een rutheniumkatalysator (Ru*) zijn hieronder afgebeeld.

B.1 <u>**Teken**</u> de structuurformule van intermediair **I** (het weergeven van de stereo- 3pt chemie van **I** is hierbij niet nodig).

B.2 Uitgaande van de optisch actieve precursor J, geeft dezelfde reeks reacties het optisch actieve derivaat van sumaneen K. De stereocentra in J ondergaan geen inversie tijdens de metathesereactie. <u>Teken</u> de structuur van K met de daarbij behorende stereochemie.

Dynamic Organic Molecules and Their Chirality

11 % of the total						
Question	A.1	A.2	A.3	B.1	B.2	Total
Points	9	3	7	3	4	26
Score						

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, n represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.

Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

A.1 Draw the structures of A-C. Stereoisomers should be distinguished. 9pt
A.2 Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The ¹H NMR chemical shifts of D are listed below. Draw the structure of D. [D (δ, ppm in CS₂, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (*M*) or (*P*) as shown below.

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation

Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound **E** contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as (P, P, P) as shown below.

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of **F**, (*P*)-**F**, multiple helicene **G** ($C_{66}H_{36}$) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of **G** formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and *M* and *P* labels according to the same numbering. For instance, the other stereoisomers of **E** should be listed as (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*P*, *P*, *M*), (*M*, *M*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), and (*M*, *P*, *M*).

Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

NLD-3 C-8 Q-4

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 Draw the structure of intermediate **I** (its stereochemistry is not required). 3pt

propriate stereochemistry.

A8-1 Nederlands (Netherlands)

Dynamische Organische Moleculen en hun Chiraliteit

Deel A

A.1 (9 pt)

A (3 pt)	B (3 pt)	C (3 pt)

A.2 (3 pt)

A.3 (7 pt)

NLD-3 C-8 A-2

NLD-3 C-8 A-3

Deel B

B.1 (3 pt)

B.2~(4~pt)

NLD-3 C-9 C-1

NLD-3 C-9 C Sebastian Krikke

Please return this cover sheet together with all the related question sheets.

Wel of geen capsule

10% van het totaal						
Vraag	A.1	A.2	A.3	A.4	A.5	Totaal
Punten	13	2	2	3	3	23
Score						

Je hoort het eigenlijk niet te doen, maar als je een tennisbal op een bepaalde manier kapotknipt, kan je hem uit elkaar halen in twee U-vormige stukken.

Gebaseerd op dit idee zijn verbindingen **1** en **2** gesynthetiseerd als U-vormige moleculen van verschillende grootte. Verbinding **3** werd gesynthetiseerd om deze te vergelijken met **1**. Het inkapselingsgedrag van deze verbindingen werd onderzocht.

De syntheseroute naar **2** is hieronder afgebeeld. De elementenanalyse van **9** geeft de volgende massapercentages: C 40.49%, H 1.70% en O 17.98%.

A.1 <u>**Teken**</u> de structuurformules van **4-9.** Houd hierbij geen rekening met stereochemie. Gebruik, net als in het schema hierboven, "PMB" als substituent in plaats van het volledig tekenen van de *p*-methoxybenzyl groep.

NLD-3 C-9 Q-4

In het massaspectrum van **1** was de ionpiek die overeenkomt met het dimeer (1_2) duidelijk te zien, terwijl in het spectrum van **3** een ionpiek van 3_2 niet aanwezig was. In het ¹H NMR spectrum van een oplossing van 1_2 , waren alle NH-protonen afkomstig van **1** chemisch equivalent, en hun chemische verschuiving was significant anders dan die van de NH-protonen van **3**. Deze data wijzen erop dat er waterstofbruggen gevormd worden tussen de NH-groepen van **1** en atomen **X** van een ander molecuul van verbinding **1** om zo een dimere capsule te vormen.

A.2	<u>Omcirkel</u> elk (van de) betreffend(e) atoom/atomen X in 1 .	2pt
A.3	${\bf \underline{Geef}}$ het aantal waterstofbruggen in de dimere capsule (1 $_2$).	2pt

NLD-3 C-9 Q-5 Nederlands (Netherlands)

De dimere capsule van $1(1_2)$ heeft een interne ruimte waarin een passend klein molecuul Z ingekapseld kan worden. Dit fenomeen wordt beschreven door de volgende vergelijking:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

De evenwichtsconstante van de inkapseling van Z in $\mathbf{1}_2$ is hieronder gegeven:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Inkapseling van een molecuul in een capsule kan gevolgd worden met NMR spectroscopie. Bijvoorbeeld, 1_2 in C₆D₆ geeft verschillende signalen in de ¹H NMR spectra vóór en na de toevoeging van CH₄.

Verbinding **2** vormt ook een rigide en grotere dimere capsule (2_2). Het ¹H NMR spectrum van 2_2 werd gemeten in C₆D₆, C₆D₅F, en in een mengsel van C₆D₆ en C₆D₅F, waarbij alle andere condities constant werden gehouden. De chemische verschuivingen behorende bij proton H^a van **2** in de bovengenoemde oplosmiddelen zijn hieronder samengevat. Behalve de vermelde signalen, zijn geen andere signalen behorende bij H^a in **2** waargenomen. Neem aan dat de binnenkant van de capsule altijd gevuld is met het maximale aantal mogelijke moleculen van het oplosmiddel en dat elk signaal overeenkomt met één soort gevulde capsule.

oplosmiddel	δ (ppm) van H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 Bepaal het aantal C_6D_6 en C_6D_5F moleculen dat ingekapseld is in 2_2 uitgaande 3pt van elk H^a signaal.

Q9-6 Nederlands (Netherlands)

NLD-3 C-9 Q-6

¹H NMR metingen in C₆D₆ laten zien dat 2₂ één molecuul 1-adamantaancarbonzuur (AdA) kan incorporeren. De associatieconstanten (K_a) die hieronder weergegeven zijn, zijn bepaald voor verschillende temperaturen. [solvent@2₂] geeft een deeltje weer dat één of meer moleculen van het oplosmiddel bevat.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Op dezelfde manier zijn ook de K_a waarden van CH₄ en $\mathbf{1}_2$, gegeven door vergelijking (2), bepaald bij verschillende temperaturen in C₆D₆ door middel van ¹H NMR metingen. De plots van deze twee associatieconstanten (als ln K_a vs 1/T) zijn hieronder weergegeven.

Er is geen C_6D_6 molecuul ingekapseld in 1_2 . In lijn **II**, is de entropieverandering (ΔS) ...(1)... en de enthalpieverandering (ΔH) ...(2)... . Dit wijst erop dat de drijvende kracht voor de inkapseling in lijn **II** ...(3)... is. Daarom hoort lijn **I** bij ...(4)... , en hoort lijn **II** bij ...(5)... .

	A	В	
(1)	positief	negatief	
(2)	positief	negatief	
(3)	ΔS	ΔH	
(4)	1_2 en CH ₄	2_2 en AdA	
(5)	1_2 en CH ₄	2 ₂ en AdA	

Likes and Dislikes of Capsule

10 % of the total						
Question	A.1	A.2	A.3	A.4	A.5	Total
Points	13	2	2	3	3	23
Score						

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds **1** and **2** were synthesized as U-shaped molecules with different sizes. Compound **3** was prepared as a comparison of **1** and the encapsulation behavior of these compounds was investigated.

The synthetic route to **2** is shown below. The elemental composition of compound **9**: C; 40.49%, H; 1.70%, and O; 17.98% by mass.

A.1 Draw the structures of **4–9**; the stereochemistry can be neglected. Use "PMB" 13pt as a substituent instead of drawing the whole structure of *p*-methoxybenzyl group shown in the scheme above.

In the mass spectrum of **1**, the ion peak corresponding to its dimer (1_2) was clearly observed, whereas an ion peak for 3_2 was not observed in the spectrum of **3**. In the ¹H NMR spectra of a solution of 1_2 , all the NH protons derived from **1** were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of **3**. These data indicate that hydrogen bonds are formed between the NH moieties of **1** and atoms **X** of another molecule of **1** to form the dimeric capsule.

A.2	<u>Circle</u> all the appropriate atom(s) X in 1 .	2pt
A.3	<u>Give</u> the number of the hydrogen bonds in the dimeric capsule (1 $_2$).	2pt

NLD-3 C-9 Q-4

The dimeric capsule of $\mathbf{1}$ ($\mathbf{1}_2$) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

The equilibrium constant of the encapsulation of Z into $\mathbf{1}_2$ is given as below:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1_2 in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound **2** also forms a rigid and larger dimeric capsule (2_2). The ¹H NMR spectrum of 2_2 was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H^a proton of **2** in the above solvents are summarized below, and no other signals from the H^a in **2**, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

solvent	δ (ppm) of H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 Determine the number of C_6D_6 and C_6D_5F molecules encapsulated in 2_2 giving 3pt each H^a signal.

¹H NMR measurements in C_6D_6 revealed that 2_2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@ 2_2] denotes a species containing one or more solvent molecules.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Similarly, the K_a values of CH₄ and 1_2 given as eq (2) at various temperatures in C₆D₆ were also determined by ¹H NMR measurements. The plots of the two association constants (as ln K_a vs 1/*T*) are shown below.

No C_6D_6 molecule is encapsulated in 1_2 . In line **II**, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line **II** is (3). Therefore, line **I** corresponds to (4), and line **II** corresponds to (5).

.5	and B.					
		A	В			
	(1)	positive	negative			
	(2)	positive	negative			
	(3)	ΔS	ΔH			
	(4)	1_2 and CH_4	2_2 and AdA			
	(5)	1_2 and CH_4	2_2 and AdA			

A9-1 Nederlands (Netherlands)

NLD-3 C-9 A-1

Wel of geen capsule

1 (13 pt)				
4 (2 pt)	5 (3 pt)			
6 (2 pt)	7 (2 pt)			
8 (2 nt)	9 (2 nt)			
6 (2 pt)	σ(2 ρι)			

NLD-3 C-9 A-2

A.2 (2 pt)

A.3~(2~pt)

A.4 (3 pt)

δ (ppm) van H ^a	aantal C ₆ D ₆	aantal C ₆ D ₅ F
4.60 ppm		
4.71 ppm		
4.82 ppm		

A.5 (3 pt)

(1):	(2):	(3) :

<u>(4)</u>: (5):