Please return this cover sheet together with all the related question sheets.
International Chemistry Olympiad 2021 Japan
53rd IChO2021 Japan
25th July – 2nd August, 2021
https://www.icho2021.org

Chemistry! It's Cool!
General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has 9 problems.
- You can solve the problems in any order.
- You will have 5 hours to solve all problems.
- You can begin working only after the START command is given.
- All results must be written in the appropriate answer boxes with pen on the answer sheets. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a 30-minute warning before the STOP command.
- You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

<table>
<thead>
<tr>
<th>Title</th>
<th>Total Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrogen at a Metal Surface</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2 Isotope Time Capsule</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3 Lambert–Beer Law?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4 The Redox Chemistry of Zinc</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5 Mysterious Silicon</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6 The Solid-State Chemistry of Transition Metals</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7 Playing with Non-benzenoid Aromaticity</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8 Dynamic Organic Molecules and Their Chirality</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9 Likes and Dislikes of Capsules</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Physical Constants and Equations

Constants

<table>
<thead>
<tr>
<th>Physical Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>$c = 2.99792458 \times 10^8 \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Planck constant</td>
<td>$h = 6.62607015 \times 10^{-34} \text{ J s}$</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>$e = 1.602176634 \times 10^{-19} \text{ C}$</td>
</tr>
<tr>
<td>Electron mass</td>
<td>$m_e = 9.10938370 \times 10^{-31} \text{ kg}$</td>
</tr>
<tr>
<td>Electric constant</td>
<td>$\varepsilon_0 = 8.85418781 \times 10^{-12} \text{ F m}^{-1}$</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td>$N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>$k_B = 1.380649 \times 10^{-23} \text{ J K}^{-1}$</td>
</tr>
<tr>
<td>Faraday constant have disinfection</td>
<td>$F = N_A \times e = 9.648532123100184 \times 10^{4} \text{ C mol}^{-1}$</td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = N_A \times k_B = 8.31446261815324 \text{ J K}^{-1} \text{ mol}^{-1}$</td>
</tr>
<tr>
<td>Unified atomic mass unit</td>
<td>$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$</td>
</tr>
<tr>
<td>Standard pressure</td>
<td>$p = 1 \text{ bar} = 10^5 \text{ Pa}$</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>$p_{\text{atm}} = 1.01325 \times 10^5 \text{ Pa}$</td>
</tr>
<tr>
<td>Zero degree Celsius</td>
<td>$0 ^\circ \text{C} = 273.15 \text{ K}$</td>
</tr>
<tr>
<td>Ångstrom</td>
<td>$1 \text{ Å} = 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>Picometer</td>
<td>$1 \text{ pm} = 10^{-12} \text{ m}$</td>
</tr>
<tr>
<td>Electronvolt</td>
<td>$1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}$</td>
</tr>
<tr>
<td>Part-per-million</td>
<td>$1 \text{ ppm} = 10^{-6}$</td>
</tr>
<tr>
<td>Part-per-billion</td>
<td>$1 \text{ ppb} = 10^{-9}$</td>
</tr>
<tr>
<td>Part-per-trillion</td>
<td>$1 \text{ ppt} = 10^{-12}$</td>
</tr>
<tr>
<td>pi</td>
<td>$\pi = 3.141592653589793$</td>
</tr>
<tr>
<td>The base of the natural logarithm (Euler’s number)</td>
<td>$e = 2.718281828459045$</td>
</tr>
</tbody>
</table>
Equations

The ideal gas law

\[PV = nRT \]

, where \(P \) is the pressure, \(V \) is the volume, \(n \) is the amount of substance, \(T \) is the absolute temperature of ideal gas.

Coulomb's law

\[F = \frac{k_e q_1 q_2}{r^2} \]

, where \(F \) is the electrostatic force, \(k_e \approx 9.0 \times 10^9 \text{ N m}^{-2} \text{ C}^{-2} \) is Coulomb's constant, \(q_1 \) and \(q_2 \) are the magnitudes of the charges, and \(r \) is the distance between the charges.

The first law of thermodynamics

\[\Delta U = q + w \]

, where \(\Delta U \) is the change in the internal energy, \(q \) is the heat supplied, \(w \) is the work done.

Enthalpy \(H \)

\[H = U + PV \]

Entropy based on Boltzmann's principle \(S \)

\[S = k_B \ln W \]

, where \(W \) is the number of microstates.

The change of entropy \(\Delta S \)

\[\Delta S = \frac{q_{\text{rev}}}{T} \]

, where \(q_{\text{rev}} \) is the heat for the reversible process.

Gibbs free energy \(G \)

\[G = H - TS \]

\[\Delta_r G^\circ = -RT \ln K = -zF E^\circ \]

, where \(K \) is the equilibrium constant, \(z \) is the number of electrons, \(E^\circ \) is the standard electrode potential.

Reaction quotient \(Q \)

\[\Delta_r G = \Delta_r G^\circ + RT \ln Q \]

For a reaction

\[aA + bB \rightleftharpoons cC + dD \]

\[Q = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

, where \([A]\) is the concentration of A.
<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat change Δq</td>
<td>$\Delta q = n c_m \Delta T$, where c_m is the temperature-independent molar heat capacity.</td>
</tr>
<tr>
<td>Nernst equation for redox reaction</td>
<td>$E = E^\circ + \frac{RT}{zF} \ln \frac{C_{\text{ox}}}{C_{\text{red}}}$, where C_{ox} is the concentration of oxidized substance, C_{red} is the concentration of reduced substance.</td>
</tr>
<tr>
<td>Arrhenius equation</td>
<td>$k = A \exp \left(- \frac{E_a}{RT} \right)$, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy.</td>
</tr>
<tr>
<td>Lambert–Beer equation</td>
<td>$A = \varepsilon l c$, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.</td>
</tr>
<tr>
<td>Henderson–Hasselbalch equation</td>
<td>For an equilibrium $\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^-$, where equilibrium constant is K_a, $pH = pK_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right)$</td>
</tr>
<tr>
<td>Energy of a photon</td>
<td>$E = h \nu = \frac{h \lambda}{c}$, where ν is the frequency, λ is the wavelength of the light.</td>
</tr>
<tr>
<td>The sum of a geometric series</td>
<td>When $x \neq 1$, $1 + x + x^2 + \cdots + x^n = \sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x}$</td>
</tr>
<tr>
<td>Approximation equation that can be used to solve problems</td>
<td>When $x \ll 1$, $\frac{1}{1 - x} \approx 1 + x$</td>
</tr>
</tbody>
</table>
1H NMR Chemical Shifts

$\Delta \delta$ for one alkyl group-substitution: ca. +0.4 ppm
Олон Улсын химийн олимпиад 2021 Япон
53-р олимпиад IChO2021 Япон
7 сарын 25 - аас 8 сарын 2, 2021
https://www.icho2021.org
Ерөнхий удирдамж

• Хариултыг зөвхөн үзгээр бичнэ.
• Программчилддагий тооны машин ашиглах ёстой.
• Энэ тэмцээн 9 даалгавартай.
• Даалгаврыг ямар ч дарааллаар гүйцэтгэж болно.
• Даалгаврыг 5 цагийн хугацаанд гүйцэтгэн.
• ЭХЭЛ команд егсний дараа даалгаврыг гүйцэтгэнэ.
• Бодолт, ур дүнгээ хариултын хуудсыг дээрх токирхох хариултын нуданд үзгээр бичнэ. Ноорого рог цас шаардлагатай тохиолдолд асуултын асуултуудыг ажиллаж болно. Хариултын хуудас өгсөн цасыг хариултын хуудасаас гарган үзгээр бичнэ.
• Энэ тэмцээн 9 даалгавартай.
• Шаардлагатай тохиолдолд 9 даалгаврын нуданд харгалзах бодолтыг заавал хийнэ. Бодолтыг бичсэн гарчиг 5 цагийн хугацаанд оноо бичэн бичнэ.
• Энэ тэмцээн 9 даалгавартай.
• Хянагч багш ХУГАЦАА ДУУСАХ-аас 30 минутын өмнө сануулна.
• ЗОГС команд егсний алгаж даагүй гүйцэтгэнэ. Гүйцэтгэнэ үед хариулт төлөвлөгөө гүйцэтгэнэ.
• Энэ тэмцээн 9 даалгавартай.
• Хянагч багш ХУГАЦАА ДУУСАХ-аас 30 минутын өмнө сануулна.
• ЗОГС команд егсний алгаж даагүй гүйцэтгэнэ. Гүйцэтгэнэ үед хариулт төлөвлөгөө гүйцэтгэнэ.
• Энэ тэмцээн 9 даалгавартай.
• Хянагч багш ХУГАЦАА ДУУСАХ-аас 30 минутын өмнө сануулна.
• ЗОГС команд егсний алгаж даагүй гүйцэтгэнэ. Гүйцэтгэнэ үед хариулт төлөвлөгөө гүйцэтгэнэ.

АМЖИЛТ ХУСЬЕ!

Даалгавр ба үнэлгээний мэдээлэл

<table>
<thead>
<tr>
<th>Гарчиг</th>
<th>Даалгаврын нэр</th>
<th>Нийт үнэлгээ</th>
<th>Гүйцэтгэлийн хувь</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Металлын гадаргуу дээрх устгэсэн</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Изотоп - цаг хугацааны капсул</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Ламберт-Бээрийн хуулб?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Цайрын исёлдэн-ангижрах химин</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Нуучлал төхөөр</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Шилжилтэй металлын нэгдлэгийн хатуу төлөөчөөрөгөө</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Бензолны бус ароматик шинжээр тоглооцогооцөө</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Динамик органик нэгдэл ба тадээрийн хираль чанар</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Капсулын дуртай болон дургүй зүйлс</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Нийт 100

МНГ-4 C-0 G-2
Монгол (Монголия)
Физик тогтмол ба тэгшитгэл

Тогтмол

<table>
<thead>
<tr>
<th>Мөрөн</th>
<th>Тогтмол</th>
<th>Ед</th>
<th>Мөрөн</th>
<th>Тогтмол</th>
<th>Ед</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вакуум дахь гэрлийн хурд</td>
<td>$c = 2.99792458 \times 10^8$ м с$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Планкійн тогтмол</td>
<td>$h = 6.62607015 \times 10^{-34}$ Ж с</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Эгэл цэнэг</td>
<td>$e = 1.602176634 \times 10^{-19}$ С</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Электронны масс</td>
<td>$m_e = 9.10938370 \times 10^{-31}$ кг</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Цахилгаан тогтмол (ваакуумд дамжуулах)</td>
<td>$\varepsilon_0 = 8.85418781 \times 10^{-12}$ Ф м$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Авогадроийн тоо</td>
<td>$N_A = 6.02214076 \times 10^{23}$ моль$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Больцманы тогтмол</td>
<td>$k_B = 1.380649 \times 10^{-23}$ Ж К$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фарадейн тогтмол</td>
<td>$F = N_A \times e = 9.64853321233100184 \times 10^4$ С моль$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Хийн нийтлэг тогтмол</td>
<td>$R = N_A \times k_B = 8.31446261815324$ Ж К$^{-1}$ моль$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$u = 1$ Да</td>
<td>$= 1.66053907 \times 10^{-27}$ кг</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стандарт даралт</td>
<td>$p = 1$ бар $= 10^5$ Па</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Атмосфериин даралт</td>
<td>$p_{атм} = 1.01325 \times 10^5$ Па</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Цельсийн тэг хэм</td>
<td>$0 ^\circ$ С $= 273.15$ К</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ангстрем</td>
<td>$1 \text{Å} = 10^{-10}$ м</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пикометр</td>
<td>$1 \text{pm} = 10^{-12}$ м</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Электрон вольт</td>
<td>$1 \text{эВ} = 1.602176634 \times 10^{-19}$ Ж</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Саяны хэсэг</td>
<td>$1 \text{ppm} = 10^{-6}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тэрбумны хэсэг</td>
<td>$1 \text{ppb} = 10^{-9}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Их наядын хэсэг</td>
<td>$1 \text{ppt} = 10^{-12}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>пи тоо</td>
<td>$\pi = 3.141592653589793$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Натурал логарифмын суурь (E тоо)</td>
<td>$e = 2.718281828459045$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Тэгшитгэл

<table>
<thead>
<tr>
<th>Идеал хийн хууль</th>
<th>$PV = nRT$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P - даралт, V - эзлэхүүн, n - бодисын тоо хэмжээ, T - идеал хийн абсолют температур.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Кулоны хууль</th>
<th>$F = k_e \frac{q_1 q_2}{r^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F - электростатик хүч, $k_e (\approx 9.0 \times 10^9 \text{N/m}^2\text{C}^{-2})$ - Кулоны тогтмөл, q_1 ба q_2 цэнгийн хэмжээтээс, r - цэнгүүтэй хооронд хэсэг</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Термодинамикийн нэгдүгээр хууль</th>
<th>$\Delta U = q + w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔU - дотоод энергийн өөрчлөлт, q дулаан тоо хэмжээ, w - ажил.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Энтальпий H</th>
<th>$H = U + PV$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Энтропий (Больцманы зарчимд ундэслэсэн) S</th>
<th>$S = k_B \ln W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W - микро телевийн тоо</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Энтропийн өөрчлөл ΔS</th>
<th>$\Delta S = \frac{q_{\text{rev}}}{T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{rev} эргэх процессийн дулаан.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Гиббсийн чөлөөт энергий G</th>
<th>$G = H - TS$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_r G^\circ = -RT \ln K = -zF E^\circ$</td>
<td></td>
</tr>
<tr>
<td>K - тэнцвэрийн тогтмөл, z -электроны тоо, E° -стандарт электродын потенциал.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Урвалын харьцаа Q</th>
<th>$\Delta_r G = \Delta_r G^\circ + RT \ln Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дараах урвалын хувьд</td>
<td></td>
</tr>
<tr>
<td>$aA + bB \rightleftharpoons cC + dD$</td>
<td></td>
</tr>
<tr>
<td>$Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$</td>
<td></td>
</tr>
<tr>
<td>$[A]$ - A-гийн концентрац</td>
<td></td>
</tr>
</tbody>
</table>

MNG-4 C-0 G-4

Mongolian (Mongolia)
<table>
<thead>
<tr>
<th>Дулааны вөрчлөл Δq</th>
<th>$\Delta q = nC_m \Delta T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_m - температураас хамаарах гүйцэтгэх молийн дулаан багтаамж.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Нернстийн тэгшитгэл</th>
<th>$E = E^0 + \frac{RT}{zF} \ln \frac{C_{ox}}{C_{red}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{ox} - исэлдсэн бодисын концентрац, C_{red} ангижирсан бодисын концентрац.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Аррениусын тэгшитгэл</th>
<th>$k = A \exp \left(- \frac{E_a}{RT} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>k - хүрэд хүрээ, A - фактор, E_a идэвхжлийн энергий.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ламберт-Бээрийн хууль</th>
<th>$A = \varepsilon lc$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - шингээлт, ε молийн шингээлтийн коэффициент, l оптик замын урт, c - уусмалын концентрац.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Хэндерсон - Хасселбахын тэгшитгэл</th>
<th>Дараах тэнцвэрт: $HA \rightleftharpoons H^+ + A^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_a - тэнцвэрийн тогтмол</td>
<td></td>
</tr>
<tr>
<td>$pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Фотоны энергия</th>
<th>$E = h\nu = \frac{h}{\lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν - давтамж, λ - гэрлийн долгионы урт.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Геометр нийлбэр</th>
<th>$x \neq 1$ үед</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + x + x^2 + \cdots + x^n = \sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Даалгавар гүйцэтгэхэд</th>
<th>$x \ll 1$ үед</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{1 - x} \approx 1 + x$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>H</td>
<td>He</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Keys:
- **Atomic number**
- **Symbol**
- **Name**
- **Atomic weight** [in parenthesis for the radioactive element]
1H NMR химийн шилжилт

$\Delta \delta$ - нэг алкил бүлэг халагдах шилжилт: +0.4 ppm орчим
Please return this cover sheet together with all the related question sheets.
Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $\text{H}_2(\text{g}) \rightarrow 2\text{H}(\text{ad})$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of kJ per mole of H_2. The solid line spacing is 20 kJ mol$^{-1}$, the dashed line spacing is 100 kJ mol$^{-1}$, and the spacing between solid and dashed lines is 80 kJ mol$^{-1}$. The zero-point vibration energy is ignored.
Fig. 1 Definition of variables. Drawing is not in scale.

Fig. 2
A.1 For each of the following items (i)–(iii), select the closest value from A–G.
(i) The interatomic distance for a gaseous H\textsubscript{2} molecule
(ii) The interatomic distance between metal atoms (d_M in Fig. 1)
(iii) The distance of adsorbed H atoms from the surface (h_{ad} in Fig. 1)

A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm
E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2 For each of the following items (i)–(ii), select the closest value from A–H.
(i) the energy required for the dissociation of gaseous H\textsubscript{2} to gaseous H
[H\textsubscript{2}(g) \rightarrow 2H(g)]
(ii) the energy released during the adsorption of a gaseous H\textsubscript{2} [H\textsubscript{2}(g) \rightarrow 2H(ad)]

A. 20 kJ mol$^{-1}$ B. 40 kJ mol$^{-1}$ C. 60 kJ mol$^{-1}$ D. 100 kJ mol$^{-1}$
E. 150 kJ mol$^{-1}$ F. 200 kJ mol$^{-1}$ G. 300 kJ mol$^{-1}$ H. 400 kJ mol$^{-1}$
Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

\[
\begin{align*}
H_2(g) & \xrightarrow{k_1} 2H(ad) \\
H(ad) & \xrightarrow{k_3} H(ab)
\end{align*}
\]

The reaction rates per surface site for adsorption, desorption, and absorption are \(r_1 [s^{-1}] \), \(r_2 [s^{-1}] \) and \(r_3 [s^{-1}] \), respectively. They are expressed as:

\[
\begin{align*}
r_1 &= k_1 P_{H_2} (1 - \theta)^2 \\
r_2 &= k_2 \theta^2 \\
r_3 &= k_3 \theta
\end{align*}
\]

where \(k_1 [s^{-1} \text{ Pa}^{-1}] \), \(k_2 [s^{-1}] \) and \(k_3 [s^{-1}] \) are the reaction rate constants and \(P_{H_2} \) is the pressure of \(H_2 \). Among the sites available on the surface, \(\theta (0 \leq \theta \leq 1) \) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption \((r_1, r_2 \gg r_3) \) and that \(\theta \) remains constant.

B.1 \(r_3 \) can be expressed as:

\[
r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2} C}}}
\]

Express \(C \) using \(k_1 \) and \(k_2 \).
A metal sample with a surface area of \(S = 1.0 \times 10^{-3} \, \text{m}^2 \) was placed in a container (1L = \(1.0 \times 10^{-3} \, \text{m}^3 \)) with \(\text{H}_2 \) (\(P_{\text{H}_2} = 1.0 \times 10^2 \, \text{Pa} \)). The density of hydrogen-atom adsorption sites on the surface was \(N = 1.3 \times 10^{18} \, \text{m}^{-2} \). The surface temperature was kept at \(T = 400 \, \text{K} \). As the reaction (1) proceeded, \(P_{\text{H}_2} \) decreased at a constant rate of \(v = 4.0 \times 10^{-4} \, \text{Pa} \, \text{s}^{-1} \). Assume that \(\text{H}_2 \) is an ideal gas and that the volume of the metal sample is negligible.

B.2 Calculate the amount of H atoms in moles absorbed per unit area of the surface per unit time, \(A [\text{mol} \, \text{s}^{-1} \, \text{m}^{-2}] \).

B.3 At \(T = 400 \, \text{K} \), \(C \) equals \(1.0 \times 10^2 \, \text{Pa}^{-1} \). Calculate the value of \(k_3 \) at 400 K. If you did not obtain the answer to **B.2**, use \(A = 3.6 \times 10^{-7} \, \text{mol} \, \text{s}^{-1} \, \text{m}^{-2} \).

B.4 At a different \(T \), \(C = 2.5 \times 10^3 \, \text{Pa}^{-1} \) and \(k_3 = 4.8 \times 10^{-2} \, \text{s}^{-1} \) are given. For \(r_3 \) as a function of \(P_{\text{H}_2} \) at this temperature, select the correct plot from (a)–(h).
Металлын гадаргуу дээрх устэрэгч

<table>
<thead>
<tr>
<th>Асуульт</th>
<th>А.1</th>
<th>А.2</th>
<th>В.1</th>
<th>В.2</th>
<th>В.3</th>
<th>В.4</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Устэрэгч нь ирээдүйд шатах ашигт малтмалаас үл хамааралтай болох гол энергийн эх үүсвэр байх төлөвтэй байна. Энд бид устэрэгч тээвэрлэх, хадгалах технологийг холбоотой металлд устэрэгч хадгалах үйл явцыг авч үзэх болно.

A хэсэг

Устэрэгч металлын гадаргуу гаар дамжин металлын мөхлөг руу абсорбцилдог тул эхлээд металлын гадаргуу дээрх устэрэгчийн адсорбцийн \(\text{H}_2(g) \rightarrow 2\text{H(ad)} \) процессыг авч үзье. Энд, хийн болон адсорбцилдэс төлөвтэй устэрэгчийг харгалзан (g) ба (ad) гэж тэмдэглэв.

Устэрэгчийн молекул (\(\text{H}_2 \)) металлд багаасад диссоциаций \(\text{H}_2 \rightarrow \text{H}_2^+ + \text{e}^- \) татаж, адсорбциятай адсорбцийн диссоциаций
\[
\Delta H = \text{адсорбция}
\]

Энд, устэрэгчийн молекул \(\text{H}_2 \) -ийн потенциал энергийг хоёр хувьсагчаар илэрхийлэх: нэгдугээрт, атом хооронд 4 дц - д, хоёрдугаарт, гадаргуугийн металлын атомтай харьцуулсан үйлдэлд ханжих нь гадаргуу дээрх параллель байх бөгөөд хундийн хуч нь 4 дц. Илэрхийлэл нь диссоциаций \(\text{H}_2 \rightarrow \text{H}_2^+ + \text{e}^- \)

Энд, устэрэгчийн молекул \(\text{H}_2 \) -ийн потенциал энергийг хоёр хувьсагчаар илэрхийлэх: нэгдугээрт, атом хооронд 4 дц - д, хоёрдугаарт, гадаргуугийн металлын атомтай харьцуулсан үйлдэлд ханжих нь гадаргуу дээрх параллель байх бөгөөд хундийн хуч нь 4 дц. Илэрхийлэл нь диссоциаций \(\text{H}_2 \rightarrow \text{H}_2^+ + \text{e}^- \)

Зураг 2-т гадаргуу дээр болох диссоциацийн потенциал энергийн контур диаграммыг харуулж. Потенциал диаграммыг дээрх тоон холбоод нь 1 моль \(\text{H}_2 \) тутамд угдаг 20 к\(\text{Ж} \) моль\(^{-1}\). Тэг цагийн хэлбэл нь \(\text{H}_2 \) тэрээгийн устэрэгчийг 100 к\(\text{Ж} \) моль\(^{-1}\), угдаг 80 к\(\text{Ж} \) моль\(^{-1}\).
Зураг 1. Хувьсах хэмжигдэхүүний тодорхойлолт. Зураг нь масштабгүй болно.

Зураг 2.
A.1

Дараах (i)–(iii) тус бүрийн хувьд хамгийн ойролцоо утгыг A–G-ээс сонгоно уу.

(i) Хий байдалтай H_2 молекул дахь атом хоорондын зай
(ii) Металлын атомуудын хоорондын зай (Зураг 1 дээрх d_M)
(iii) Адсорбцилогдсон H атомуудын гадаргуугаас алслагдсан зай (Зураг 1 дээрх h_{ad})

<table>
<thead>
<tr>
<th>А. 0.03 нм</th>
<th>Б. 0.07 нм</th>
<th>В. 0.11 нм</th>
<th>Г. 0.15 нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Д. 0.19 нм</td>
<td>Е. 0.23 нм</td>
<td>F. 0.27 нм</td>
<td></td>
</tr>
</tbody>
</table>

A.2

Дараах (i)–(ii) тус бүрийн хувьд хамгийн ойролцоо утгыг A–H-ээс сонгоно уу.

(i) H_2 хийг H хий болгон залахад шаардагдах энергий

$$[H_2(g) \rightarrow 2H(g)]$$

(ii) H_2 хийг адсорбцилж адсорбциих ялгарах энергий

$$[H_2(g) \rightarrow 2H(ad)]$$

<table>
<thead>
<tr>
<th>А. 20 кЖ моль$^{-1}$</th>
<th>Б. 40 кЖ моль$^{-1}$</th>
<th>В. 60 кЖ моль$^{-1}$</th>
<th>Г. 100 кЖ моль$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Д. 150 кЖ моль$^{-1}$</td>
<td>Е. 200 кЖ моль$^{-1}$</td>
<td>F. 300 кЖ моль$^{-1}$</td>
<td>Г. 400 кЖ моль$^{-1}$</td>
</tr>
</tbody>
</table>
Б хэсэг

Адсорбцилогдсон устүрөгчийн атом нь цаашид хоорондоо дахин нэгдэж хийн фаз руу десорбцилогдно (1а тэгшитгэл), мөн металлын мөхлөг руу абсорбцилогдно (1б тэгшитгэл). H(ab) нь металлын мөхлөг руу абсорбцилогдсон устүрөгчийн атомыг илэрхийлнэ.

\[
\begin{align*}
H_2(g) & \overset{k_1}{\underset{k_2}{\rightleftharpoons}} 2\text{H(ad)} \\
\text{H(ad)} & \rightarrow \text{H(ab)}
\end{align*}
\]

(1a) (1b)

Гадаргуугийн нэгж цэгт болох адсорбц, десорбц, абсорбцийн хурд нь харгалзан \(r_1\) [\(\text{c}^{-1}\)], \(r_2\) [\(\text{c}^{-1}\)], \(r_3\) [\(\text{c}^{-1}\)] байна. Тэдгээрийг дараах байдлаар илэрхийлнэ:

\[
\begin{align*}
\theta &= k_1 P_{H_2}(1 - \theta)^2 \\
\theta &= k_2 \theta^2 \\
\theta &= k_3 \theta
\end{align*}
\]

(2) (3) (4)

энд \(k_1\) [\(\text{c}^{-1}\) Па\(^{-1}\)], \(k_2\) [\(\text{c}^{-1}\)], \(k_3\) [\(\text{c}^{-1}\)] нь урвалын хурдын тогтмол, харин \(P_{H_2}\) нь \(H_2\)-ийн даралт юм. Гадаргуу дээр байгаа боломжийн төлөө \(\theta\) \(0 \leq \theta \leq 1\) нь \(H\)-ийн атомд зэлэгдсэн өндөрний доль юм. Адсорбц ба десорбц нь абсорбцитой харьцуулахад хурдан \((r_1, r_2 \gg r_3)\) багтмэд \(\theta\) нь тогтмол гэж узэж болно.

В.1 \(r_3\)-ийг дараах байдлаар илэрхийлж болно: 5pt

\[
r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}
\]

(5)

\(k_1\) болон \(k_2\)-ийг ашиглан \(C\)-г илэрхийлэн үү.
$S = 1.0 \times 10^{-3}$ м² гадаргуугийн талбай бухий металлын дээжийг H_2 ($P_{\text{H}_2} = 1.0 \times 10^2$ Па) бухий сав (1 л = 1.0×10^{-3} м³)-нд байрлуулсан. Гадаргуу дээр устөрөгчийн атомын адсорбцэлдэгдсэн цэгийн нягтрал $N = 1.3 \times 10^{18}$ м⁻² байв. Гадаргууний температурыг $T = 400$ K байлгасан. Урвал (1) явагдахад устөрөгчийн даралт P_{H_2} тоог төгсөл $v = 4.0 \times 10^{-4}$ Па с⁻¹ хүрдтэйгаар буурав.

Устөрөгч H_2-ийг идеаль хий, металлын ээлхүүний тооцоо бага гэж тус тус үзнэ.

B.2 Нэгж хугацаанд гадаргуугийн нэгж талбайд абсорбцэлдэгдсэн H атомын мольтой, A [моль с⁻¹ м⁻²]-г тооцоолно уу.

B.3 $T = 400$ K үед C нь 1.0×10^2 Па⁻¹-тэй тэнцүү байна. k_3-ийг 400 K-д тооцоолно уу. Хэрэв B.2-т хариулж чадаагүй бол $A = 3.6 \times 10^{-7}$ моль с⁻¹ м⁻²-ийг энэ тооцоондоо ашиглана уу.

B.4 Өөр нэгэн T-ийн үед $C = 2.5 \times 10^3$ Па⁻¹ болон $k_3 = 4.8 \times 10^{-2}$ с⁻¹ гэж егээд. Энэ температурт P_{H_2}-ээс хамаарсан функцийн болох r_{3}-ийн хувьд тохиох графикийг (a)-(h)-эс сонгоно уу.
Металлын гадаргуу дээрх устертгэч

А.1 (6 pt)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

А.2 (4 pt)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
В хэсэг

В.1 (5 pt)

C = __________________
B.2 (3 pt)

\[A = \text{моль с}^{-1} \text{м}^{-2} \]

B.3 (3 pt)

\[k_3 = \text{с}^{-1} \]

B.4 (3 pt)

Please return this cover sheet together with all the related question sheets.
Isotope Time Capsule

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular entities that differ only in isotopic composition, such as CH\textsubscript{4} and CH\textsubscript{3}D, are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

\[^{12}\text{C}^{16}\text{O}_2 + ^{12}\text{C}^{18}\text{O}_2 \rightleftharpoons 2^{12}\text{C}^{16}\text{O}^{18}\text{O} \]

\[K = \frac{[^{12}\text{C}^{16}\text{O}^{18}\text{O}]^2}{[^{12}\text{C}^{16}\text{O}_2][^{12}\text{C}^{18}\text{O}_2]} \] \hspace{1cm} (1)

The entropy, \(S \), increases with increasing the number of possible microscopic states of a system, \(W \):

\[S = k_B \ln W \] \hspace{1cm} (2)

\(W = 1 \) for \(^{12}\text{C}^{16}\text{O}_2\) and \(^{12}\text{C}^{18}\text{O}_2\). In contrast, \(W = 2 \) for a \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) molecules, \(W = 2^2 = 4 \).
A.1 The enthalpy change, ΔH, of eq. 3 is positive regardless of the temperature.

$$H_2 + DI \rightleftharpoons HD + HI$$ (3)

Calculate the equilibrium constants, K, for eq. 3 at very low (think of $T \to 0$) and very high (think of $T \to +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

$$2HD \rightleftharpoons H_2 + D_2$$ \hspace{1cm} \hspace{1cm} K = \frac{[H_2][D_2]}{[HD]^2} \hspace{1cm} (4)

At $T = 0$ K, the vibrational energy of a diatomic molecule whose vibration frequency is $\nu \ [s^{-1}]$ is expressed as:

$$E = \frac{1}{2} h \nu$$ \hspace{1cm} (5)

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$ \hspace{1cm} (6)

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2, according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$ \hspace{1cm} (7)

A.2 The vibration of H_2 is at $4161.0 \ cm^{-1}$ when reported as a wavenumber. 8pt

Calculate the ΔH of the following equation at $T = 0$ K in units of J mol$^{-1}$.

$$2HD \rightarrow H_2 + D_2$$ \hspace{1cm} (8)

Assume that:
- only the vibrational energy contributes to the ΔH.
- the k values for H_2, HD, and D_2 are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.
The molar ratio of H_2, HD, and D_2 depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D_2.

$$\Delta_{D_2} = \frac{R_{D_2}}{R^*_{D_2}} - 1$$

(9)

Here, R_{D_2} refers to $\frac{[D_2]}{[H_2]}$ in the sample and $R^*_{D_2}$ to $\frac{[D_2]}{[H_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 **Calculate** Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.
In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO$_2$ molecules with molecular weights of 44 and 47, which are described as CO$_2$[44] and CO$_2$[47] below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^{\infty}} - 1$$

(10)

R_{47} refers to $[\text{CO}_2[47]]$ in the sample and R_{47}^{∞} to $[\text{CO}_2[47]]$ at $T \rightarrow +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

<table>
<thead>
<tr>
<th></th>
<th>12C</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>16O</th>
<th>17O</th>
<th>18O</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4}$$

(11)

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5}. Estimate the temperature using this R_{47}. This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of CO$_2$[47] for the calculation.
Изотоп - Цаг хугацааны капсул

<table>
<thead>
<tr>
<th>Нийт онооны 11 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуульт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэлгээ</td>
</tr>
</tbody>
</table>

Молекулны бутэц ын зөвхөн изотопын найрлагаараа ялгаатай CH₄, CH₃D ээрэг бодисуудыг изотополог гэж нэрлэдэг. Изотопологийг их химийн шинж чанартай гэж үздэг боловч үнэндээ ялимгүй ялгаатай.

Энэ даалгаварт харуулсан бух бодисууд хийн төлөвт байна гэж үзнэ.

Дараах тэнцэрийг авч үзье:

$$^{12}\text{C}^{16}\text{O}_2 + ^{12}\text{C}^{18}\text{O}_2 \rightarrow 2^{12}\text{C}^{16}\text{O}^{18}\text{O}$$

$$K = \frac{[^{12}\text{C}^{16}\text{O}^{18}\text{O}]^2}{[^{12}\text{C}^{16}\text{O}_2][^{12}\text{C}^{18}\text{O}_2]}$$ (1)

Системийн боломжит микро төлөв байдлын тоо W ихээхэд энтропи, S ихээдаг:

$$S = k_B \ln W$$ (2)

$^{12}\text{C}^{16}\text{O}_2$ ба $^{12}\text{C}^{18}\text{O}_2$ хувьд $W = 1$ байна. Эсэргээрээ, $^{12}\text{C}^{16}\text{O}^{18}\text{O}$ молекулны хувьд $W = 2$ байдаг нь эн молекул дахь хүчилтөргчийн атомууд ялгаатай байдгаас болно. Тэгшитгэл 1-д харуулснаар тэнцэрийн баруун талд хоёр молекул $^{12}\text{C}^{16}\text{O}^{18}\text{O}$ байгаа учир, $W = 2^2 = 4$ болно.
А.1

Тэгшитгэл 3-ын энталпийн вэрчлэл, ΔH температураас үл хамааран энергия байна.

\[H_2 + DI \rightleftharpoons HD + HI \quad (3) \]

Тэгшитгэл 3-ын хувьд мага $T \to 0$ ба маш ёндөр $T \to +\infty$ температурт тэнцэрийн тогтмөл, K-г тооцоолоо уу. Эдгээр температурт урвал вэрчлэдгийг хэмээн байх ба ΔH-ын ёндөр температурт тогтмөл утгад шиалддаг гэж үзнэ.

Дараах процессын ΔH-ийг молекулын хэлбэлзлээр тайлбарлаж болдог.

\[2HD \rightleftharpoons H_2 + D_2 \quad K = \frac{[H_2][D_2]}{[HD]^2} \quad (4) \]

$T = 0$ К уд хэлбэлзлэйн давтамж нь ν [с$^{-1}$] байх диатомт молекулын хэлбэлзлэйн энергийг дараах байдлаар илэрхийлнэ:

\[E = \frac{1}{2} h \nu \quad (5) \]

\[\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \quad (6) \]

Энд k нь хучний тогтмөл, μ нь ангийсран масс бөгөөд ангийсран массыг диатомт молекул дахь хоёр атомын масс m_1 ба m_2-оор дараах тэгшитгэлийн дагуу тодорхойлно:

\[\mu = \frac{m_1 m_2}{m_1 + m_2} \quad (7) \]

А.2

H_2-ийн хэлбэлзлэйг долгиооны тоогоор илэрхийлэхэд 4161.0 см$^{-1}$ байжээ. 8пт

Тэгшитгэл 4-ийн ΔH-ийг $T = 0$ К уд Ж моль$^{-1}$ нэгжээр тооцоолоо уу.

\[2HD \rightarrow H_2 + D_2 \quad (8) \]

- Зэвхэг хэлбэлзлэйн энергий ΔH-д вэрчлэлт оруулдаг
- H_2, HD, D$_2$-ийн k угта ижил
- H-ийн масс 1 Да, D-ийн масс 2 Да байна гэж үзнэ.
Тэнцвэр тогтсон систем H₂, HD, D₂-ийн молийн харьцаа температураас хамаарна. Энд \(\Delta_{D_2} \) нь D₂-ийн молийн харьцааны вөрөсчөлөөр тодорхойлогоно.

\[
\Delta_{D_2} = \frac{R_{D_2}}{R_{D_2}^r} - 1
\]

(9)

Энд: \(R_{D_2} \) нь дээжин дэх \([D_2] \) г, \(R_{D_2}^r \) нь \(T \to +\infty \) үеийн \([D_2] \) г илэрхийлнэ. Изотопын тархалт \(T \to +\infty \) үед санамсаргуй болж байгааг анхаарна уу.

A.3

Тэгшитгэл 4-ийн тэнцврийн тогтмол \(k' \) нь 0.300 байх температур тэнцвэр тогтсон үед байгаль дахь D тархалтаар \(\Delta_{D_2} \) г юм төөцөллөө уу. D ба Н-ийн байгаль дахь тархалтын молийн доль \(1.5576 \times 10^{-4} \) ба \(1 - 1.5576 \times 10^{-4} \) байна гэж унэнэ.

$$\Delta_{47} = \frac{R_{47}}{R_{44}} - 1$$ (10)

R₄₇ нь дээжин дэх $[\text{CO}_2[47]]$ ба R₄₄ нь $T \rightarrow +\infty$ үеийн $[\text{CO}_2[44]]$-г илэрхийлнэ. Байгаль дахь нүүрстөрөгч ба хүчилтөрөгчийн изотопуудын тархалтын молийн долийг доор харуулав. Энд харуулаагүй изотопуудыг тооцохгүй орхино.

<table>
<thead>
<tr>
<th></th>
<th>¹²C</th>
<th>¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td>байгаль дахь тархалт</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>¹⁶O</th>
<th>¹⁷O</th>
<th>¹⁸O</th>
</tr>
</thead>
<tbody>
<tr>
<td>байгаль дахь тархалт</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

Δ_{47}-ийн температураас хамаарах хамаарлыг дараах байдлаар тодорхойлоно, энд T-ийг Кельвиний нэгжээр өгсөн:

$$\Delta_{47} = \frac{36.2}{7^2} + 2.920 \times 10^{-4}$$ (11)

А.4
Антарктидын далайн ёроолоос одлсон чулуужсан планктонты R_{47} нь 9pt 4.50865×10⁻³ байв. Энэ R_{47}-г ашиглан температурыг тооцоолно уу. Энэ температурыг планктон амьдарч байсан уеийн агаарын температур гэж үздэг. Тооцоонд зөвхөн хамгийн тугээмэл изотопол CO₂[47] авна.
Изотоп - Цаг хугацааны капсул

A.1 (8 pt)

\[T \to 0 : K = \quad , \quad T \to +\infty : K = \]
ΔΗ = Ж моль⁻¹
ΔD₂ = ________________
A.4 (9 pt)

\[T = \]
Please return this cover sheet together with all the related question sheets.
Lambert–Beer Law?

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution X was prepared using HA and NaA. The concentrations $[A^-]$, $[HA]$, and $[H^+]$ in solution X are 1.00×10^{-2} mol L$^{-1}$, 1.00×10^{-3} mol L$^{-1}$, and 1.00×10^{-4} mol L$^{-1}$, respectively, which are correlated via the following acid-base equilibrium:

$$\text{HA} \rightleftharpoons \text{A}^- + \text{H}^+$$

$$K = \frac{[A^-][H^+]}{[HA]}$$

(1)

The optical path length is l in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

| A.1 | The absorbance of X was A_1 at a wavelength of λ_1. Then, solution X was diluted to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1. **Determine** the ratio $\varepsilon_{HA}/\varepsilon_{A^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A$^-$, respectively, at λ_1. | 10pt |
Part B

Let us consider the following equilibrium in the gas phase.

\[\text{D} \rightleftharpoons 2\text{M} \] \hspace{1cm} (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of \(S \) (see the figure below) at a pressure \(P \), and equilibrium is established while the total pressure is kept at \(P \). The absorbance of the gas is \(A = \varepsilon (n/V)l \), where \(\varepsilon \), \(n \), \(V \), and \(l \) are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

<table>
<thead>
<tr>
<th></th>
<th>Initial state</th>
<th>After equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>Partial pressure</td>
<td>(P)</td>
<td>0</td>
</tr>
<tr>
<td>Amount in moles</td>
<td>(n_0)</td>
<td>0</td>
</tr>
<tr>
<td>Volume</td>
<td>(V_0)</td>
<td></td>
</tr>
</tbody>
</table>

B.1 The absorbance of the gas at \(\lambda_{B1} \) measured from direction \(x \) (\(l = l_x \)) was \(A_{B1} \) both at the initial state and after the equilibrium. **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B1} \), where \(\varepsilon_D \) and \(\varepsilon_M \) represent the absorption coefficients of D and of M, respectively.

B.2 The absorbance of the gas at \(\lambda_{B2} \) measured from direction \(y \) was \(A_{B2} \) both at the initial state (\(l = l_y \)) and after the equilibrium (\(l = l_y \)). **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B2} \).
Нийт онооны 8%

<table>
<thead>
<tr>
<th>Асуулт</th>
<th>A.1</th>
<th>B.1</th>
<th>B.2</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>22</td>
</tr>
</tbody>
</table>

Энэхүү бодлогод уусгач болон савны шингээлтийг тооцохгүй. Бүх уусмал болон хийн температур нь тогтмол 25 ºС байсан.

А хэсэг

NA болон NaA-г ашиглан X-ийн усан уусмалыг бэлтгэсэн. X-ийн уусмал дахь $[A^-], [HA], [H^+]$-ийн концентрац тус бүр 1.00 x 10^-2 моль л^-1, 1.00 x 10^-3 моль л^-1, 1.00 x 10^-4 моль л^-1 ба дараах хүчлсүүрийн тэнцвэрт хамаарна:

$$\text{HA} \rightleftharpoons A^- + H^+$$

$$K = \frac{[A^-][H^+]}{[HA]}$$ \hspace{10pt} (1)

А хэсэгт оптик замын урт λ болно. Шингээлэлтийн дараах нят нь вэрчлэлтийг тооцохгүй. Тэгшитгэл 1-ээс ерх химийн урвал явагдахгүй гэж үзээ.

A.1

λ_1 долгионы уртад X-ийн шингээлт λ_1. X-ийн уусмалыг pH = 2.500-тай давсны хүчлөн уусмалар анхны ээлхүүнийг 2 дахин их болтол шингээрүүлсэн. Шингээлэлтийн дараах шингээлт λ_1-т λ_1 хэвээр байв. λ_1-т NA болон A^--ийн шингээлтийн коэффициентууд харгалзан ε_{HA} ба ε_{A^-} бол $\varepsilon_{HA}/\varepsilon_{A^-}$-ийн харьцааг тодорхойлоо.
В хэсэг

Хийн фаз дахь дараах тэнцээрийг авч үзье.

\[D \rightleftharpoons 2M \]

(2)

\(S \) хэндлэн өглөлттэй хөдөлгөөн хана бууий тэгш эцэгт тунгалааг сав (доорх зүрхийг харна уу)-ыг \(P \) даалгүүлэн цэвэр \(D \) хийгээр дурысгал ба тэнцээр тогтохноо дарах нийт дарал \(P \) өөрчлөгдөөгүй. Хийн шинжээлгүй \(A = \varepsilon(n/V)l \) бэгэд \(\varepsilon, n, V \) ба \(l \) нь харгалзан шинжээлгүй коэффициент, хийн молийн тоо, хийн эзэлхүүн, оптик замын урт юм. Хийн холимог дахь буухийг идеал хийгээр дүүргэсэн ба тэнцээр тогтсоноо дараа нийт дарал \(P \) өөрчлөгдөөгүй.

\[
\begin{align*}
\text{Анхны төлөв} & \quad \text{Тэнцээрийн дараах} \\
D & \quad P & \quad p_D & \quad p_M \\
M & \quad 0 & \quad n_D & \quad n_M \\
\text{Молийн тоо} & \quad V_0 & \quad V \\
\text{Эзэлхүүн} & \quad V_0 & \quad V
\end{align*}
\]

Б.1 \(\lambda_{B1} \) тэй хийн шинжээлгүй \(x \) \((l = l_x) \) чиглэл дагуу хэмжихэд анхны төлөв болон тэнцээрийн дараах хоёулаа \(A_{B1} \) байв. \(D \) болон \(M \)-ийн шинжээлгүй коэффициент харгалзан \(\varepsilon_D \) ба \(\varepsilon_M \) бол \(\lambda_{B1} \) дэх \(\varepsilon_D/\varepsilon_M \)-ийн харьцааг тодорхойлоо уу.

Б.2 \(\lambda_{B2} \) дэх тэй хийн шинжээлгүй \(y \) чиглэл дагуу хэмжихэд анхны төлөв \((l = l_y) \) болон тэнцээрийн дараах \((l = l_y) \) хоёулаа \(A_{B2} \) байв. \(\lambda_{B2} \) дэх \(\varepsilon_D/\varepsilon_M \)-ийн харьцааг тодорхойлоо уу.
Ламберт-Бээрийн хууль?

А хэсэг

А.1 (10 рт)

(Үргэлжлэл дараагийн хуудсанд)
\[\frac{\varepsilon_{HA}}{\varepsilon_{A^-}} = \]
\[\varepsilon_D / \varepsilon_M = \frac{\varepsilon_D}{\varepsilon_M} \]
Please return this cover sheet together with all the related question sheets.
The Redox Chemistry of Zinc

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $\text{Zn(OH)}_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \quad K_{sp} = 1.74 \times 10^{-17} \tag{1}
\]

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6} \tag{2}
\]

\[
\text{Zn(OH)}_2(s) + 2\text{OH}^-(aq) \rightleftharpoons \text{Zn(OH)}_4^{2-}(aq) \quad K_2 = 6.47 \times 10^{-2} \tag{3}
\]

\[
\text{H}_2\text{O(l)} \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq) \quad K_w = 1.00 \times 10^{-14} \tag{4}
\]
The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$

(A.1) When the equilibria in eq. 1–4 are established, calculate the pH range in which $[Zn(OH)_2(aq)]$ is the greatest among $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ and $[Zn(OH)_4^{2-}(aq)]$.

(A.2) A saturated aqueous solution of Zn(OH)$_2$(s) with pH = 7.00 was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. Calculate the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(l)$$

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$

(B.1) In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. Calculate the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{ZnO}(300°C) = -2.90 \times 10^2$ kJ mol$^{-1}$ and $\Delta G_{H_2O}(300°C) = -2.20 \times 10^2$ kJ mol$^{-1}$, respectively.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E°.

$$Zn(s) + \frac{1}{2}O_2(g) \rightarrow ZnO(s) \quad E^\circ = 1.65 \text{ V}$$

(B.2) A zinc-air battery was discharged at 20 mA for 24 hours. Calculate the change in mass of the negative electrode (anode) of the battery.
B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environment. **Calculate** the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are −38 °C (February) and 3776 m, respectively. The atmospheric pressure is represented by

\[P \text{[bar]} = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \]

(9)

at altitude \(h \) [m] and temperature \(T \) [°C]. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is \(\Delta G_{\text{ZnO}}(-38 \degree \text{C}) = -3.26 \times 10^2 \text{ kJ mol}^{-1} \) at −38 °C and 1 bar.

B.4 **Calculate** the Gibbs energy change for reaction (6) at 25 °C. Note that the standard reduction potentials, \(E^\circ(\text{Zn}^{2+}/\text{Zn}) \) and \(E^\circ(\text{O}_2/\text{H}_2\text{O}) \) at 25 °C and 1 bar are given as (10) and (11), respectively.

\[\text{Zn}^{2+} + 2\text{e}^- \rightarrow \text{Zn} \quad E^\circ(\text{Zn}^{2+}/\text{Zn}) = -0.77 \text{ V} \]

(10)

\[\text{O}_2 + 4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{H}_2\text{O} \quad E^\circ(\text{O}_2/\text{H}_2\text{O}) = 1.23 \text{ V} \]

(11)
Цайрын исэлдэн-ангизрах хими

<table>
<thead>
<tr>
<th>Асуульт</th>
<th>A.1</th>
<th>A.2</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Цайрыг удаан хугацааны туршд гууль болон ган материалын хайлш болгон хэрэглэж ирсэн. Усыг хоргүйжуулжүүн тулд уйлдавзрийн бохирийн усанд агуулагддаг цайрыг тунадасжуулахын усандаа цайрыг тунадасжуулах, гарган авсан түндэсээс ангижрахуулагч металл цайр болгоох дахин ашиглахад.

А хэсэг
25 ºС-т цайрын гидроксид Zn(OH)₂(s)-ийн уусахын тэнцэвэр болон холбогдох тэнцэвэр нь төггөлдөг тэтгэсэн 1-4-т өгөв.

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^- (aq) \quad K_{sp} = 1.74 \times 10^{-17} \quad (1)
\]

\[
\text{Zn(OH)}_2(s) \rightarrow \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6} \quad (2)
\]

\[
\text{Zn(OH)}_2(s) + 2\text{OH}^- (aq) \rightleftharpoons \text{Zn(OH)}_4^{2-} (aq) \quad K_2 = 6.47 \times 10^{-2} \quad (3)
\]

\[
\text{H}_2\text{O(l)} \rightleftharpoons \text{H}^+(aq) + \text{OH}^- (aq) \quad K_w = 1.00 \times 10^{-14} \quad (4)
\]
Цайрын уусах чанар, S (ханасан уусмал дахь цайрын концентрац)-г тэгшитгэл 5-т өгөв.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_{2-}^3(aq)]$$ \hspace{1cm} (5)

A.1 Тэгшитгэл 1-4-д тэнцвэр тогтсон үед $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$, $[Zn(OH)_{2-}^3(aq)]$ гүрвэас рН-ийн ямар мужид $[Zn(OH)_2(aq)]$ нь хамгийн их байхыг тооцоолно уу.

A.2 pH = 7.00-тай Zn(OH)\(_2\)(s)-ийн ханасан уусмал бэлтгэж, шуусэн. Шуугдэсний pH-ийг 12.00 болтол NaOH нэмсэн. pH-ийг 7.00-с 12.00 болтол ихэсгэхэд тунадасжсан цайрын молийн хувийг **тооцоолно уу**. Эзэлхүүн болон температурууны вэрчлэлтийг тооцохгүй.

В хэсэг
Тунадасжсан цайрын гидроксидыг халааж доорх урвалын дагуу цайрын оксидыг гарган авдаг.

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(l)$$ \hspace{1cm} (6)

Цайрын оксидыг устөрөгчтэй урвалд оруулж металл цайр болтол ангижруулна.

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$ \hspace{1cm} (7)

B.1 Урвал (7)-д устөрөгчийн даралтыг 1 бар байлгахын тулд уусэн усны уурьн 4pt парциал даралтыг бууруулах шаардлагатай байдаг. 300 °C-т урвал (7)-г явуулах уеийн уусэн уурьн парциал даралтыг дээд хязгаарыг **тооцоолно уу**. Энд, 6ух хийн хувьд 300 °C, 1 бар даралтанд цайрын оксид болон уусын уусэхийн Гиббсийн энергий $\Delta G_{ZnO}(300 °C) = -2.90 \times 10^2 \text{kJ моль}^{-1}$ болон $\Delta G_{H_2O}(300 °C) = -2.20 \times 10^2 \text{kJ моль}^{-1}$ болно.

Металл цайрыг металл-агаарын батарейнд серег электрод (анод)-ын материал болгон ашигладаг. Электрод нь Zn ба ZnO-ээс бүрдэн. Батарейд явагдах исэлдээ ангижрах урвалын тэгшитгэл болон 25 °C, 1 бар даралтанд цахилгаан хөдөлгөх хүч (ц.х.х), E°-г доор харуулав.

$$Zn(s) + \frac{1}{2}O_2(g) \rightarrow ZnO(s) \hspace{1cm} E^\circ = 1.65 \text{V}$$ \hspace{1cm} (8)

B.2 Цайр-агаарын батарейг 20 mA гүйдлийн хүчээр 24 цаг хэрэглээд цэ-3pt нэггүй болдог. Батарейн серег электрод (анод)-ын массын вэрчлэлтийг **тооцоолно уу**.
Цайр-агаарын батарейн ц.х.н-ийн хүрээлэн буй орчноос хамаарсан өөрчлөлтийг авч үзье. Фүжий уул орол - 3776 м өндөрт, −38° С (2-р сар)-т ц.х.н-ийг
тооцолно уу.

Атмосферын даралтыг h [м] эндер ба T[°C] температураас хамааруулан дараах томьёогор тооцдог:

$$P [\text{bar}] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257}$$ \hspace{1cm} (9)

Атмосфөр дэх хүчилтөрөгчийн молийн харьцаа 21%.

Урвал (8)-ийн Гиббсийн энергийн өөрчлөлт нь −38° C, 1 бар даралтад
$\Delta G_{\text{ZnO}}(−38^\circ \text{C}) = −3.26 \times 10^2 \text{kJ моль}^{-1}$ байна.

25°С-д урвал (6)-ийн Гиббсийн энергийн өөрчлөлт нь
тооцолно уу.

25°С-д, 1 бар даралтад $E^\circ(Zn^{2+}/Zn)$ ба $E^\circ(O_2/H_2O)$ гэсэн стандарт ангижрах потенциалуудыг тэгшитгэл (10) ба (11)-т өгөв.

$$Zn^{2+} + 2e^- \rightarrow Zn \quad E^\circ(Zn^{2+}/Zn) = −0.77 \text{V}$$ \hspace{1cm} (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \quad E^\circ(O_2/H_2O) = 1.23 \text{V}$$ \hspace{1cm} (11)
Цайрын исэлдэн-ангижрах хими

А хэсэг

A.1 (6 pt)

__________________________ < pH < ______________________
A.2 (5 pt)
В хэсэг

В.1 (4 pt)

\[\text{бар} \]

г

В.2 (3 pt)

\[\text{бар} \]
B.3 (5 pt)
\[\Delta G^* = \text{Ж моль}^{-1} \]
Please return this cover sheet together with all the related question sheets.
Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as \(R^1\text{Si}≡\text{Si}≡\text{Si}≡\text{Si}≡\text{R}^1 \) (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

\[
\text{R}^1\text{Si}≡\text{Si}≡\text{Si}≡\text{Si}≡\text{R}^1 + \text{H}_2\text{C}≡\text{CH}_2 \rightarrow \text{[Product]}
\]

When \(\text{R}^1\text{Si}≡\text{Si}≡\text{Si}≡\text{Si}≡\text{R}^1 \) is treated with an alkyne (\(\text{R}^2\text{C}≡\text{C}≡\text{R}^2 \)), the four-membered-ring compound \(\text{A} \) is formed as an initial intermediate. Further reaction of another molecule of \(\text{R}^2\text{C}≡\text{C}≡\text{R}^2 \) with \(\text{A} \) affords isomers \(\text{B} \) and \(\text{C} \), both of which have benzene-like cyclic conjugated structures, so-called ‘disilabenzenes’ that contain a six-membered ring and can be formulated as \((\text{R}^1\text{Si})_2(\text{R}^2\text{C})_4 \).
The 13C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for B and one signal for C.

A.1 **Draw** the structural formulae of A, B, and C using R^1, R^2, Si, and C, with one of the possible resonance structures.

A.2 **Calculate** the aromatic stabilization energy (ASE) for benzene and C (in the case of $R^1 = R^2 = \text{H}$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

\begin{align*}
\text{H}_2\text{C} &\equiv \text{CH}_2 + \text{H}_2 \quad \rightarrow \quad \text{H}_3\text{C} &\equiv &\text{CH}_3 \quad \Delta H = -135 \text{ kJ mol}^{-1} \quad (1) \\
\text{H}_2\text{Si} &\equiv \text{CH}_2 + \text{H}_2 \quad \rightarrow \quad \text{H}_3\text{Si} &\equiv &\text{CH}_3 \quad \Delta H = -213 \text{ kJ mol}^{-1} \quad (2) \\
\text{H}_2\text{Si} &\equiv \text{SiH}_2 + \text{H}_2 \quad \rightarrow \quad \text{H}_3\text{Si} &\equiv &\text{SiH}_3 \quad \Delta H = -206 \text{ kJ mol}^{-1} \quad (3) \\
\text{H}_2 &\equiv \text{Si} \quad + \quad 3 \text{H}_2 \quad \rightarrow \quad \text{H}_3 &\equiv &\text{SiH}_2 \quad \Delta H = -173 \text{ kJ mol}^{-1} \quad (4) \\
\text{HSi} &\equiv \text{SiH} \quad + \quad 3 \text{H}_2 \quad \rightarrow \quad \text{H}_2\text{Si} &\equiv &\text{SiH}_2 \quad \Delta H = -326 \text{ kJ mol}^{-1} \quad (5) \\
\text{HSi} &\equiv \text{SiH} \quad + \quad 3 \text{H}_2 \quad \rightarrow \quad \text{H}_2\text{Si} &\equiv &\text{SiH}_2 \quad \Delta H = -368 \text{ kJ mol}^{-1} \quad (6) \\
\text{HSi} &\equiv \text{SiH} \quad + \quad 3 \text{H}_2 \quad \rightarrow \quad \text{H}_2\text{Si} &\equiv &\text{SiH}_2 \quad \Delta H = -389 \text{ kJ mol}^{-1} \quad (7)
\end{align*}
When a xylene solution of C is heated, it undergoes isomerization to give an equilibrium mixture of compounds D and E. The molar ratio is $D:E = 1:40.0$ at $50.0 \, ^\circ C$ and $D:E = 1:20.0$ at $120.0 \, ^\circ C$.

A.3 **Calculate** ΔH for the transformation of D to E. Assume that ΔH does not depend on temperature.

The isomerization from C to D and to E proceeds via transformations of π-bonds into σ-bonds without breaking any σ-bonds. A 13C NMR analysis revealed one signal for the Si_2C_4 skeleton of D and two signals for that of E. The skeleton of D does not contain any three-membered rings, while E has two three-membered rings that share an edge.

A.4 **Draw** the structural formulae of D and E using R^1, R^2, Si, and C.

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl_4 using Na_2SiF_6 was carried out as follows.

- **Standardization of Na_2SiF_6 solution**

 - **Preparation**
 Aqueous solution F: 0.855 g of Na_2SiF_6 (188.053 g mol$^{-1}$) dissolved in water (total volume: 200 mL).
 Aqueous solution G: 6.86 g of $Ce_2(SO_4)_3$ (568.424 g mol$^{-1}$) dissolved in water (total volume: 200 mL).

 - **Procedure**
 Precipitation titration of a solution F (50.0 mL) by dropwise adding solution G in the presence of xylenol orange, which coordinates to Ce^{3+}, as an indicator. After adding 18.8 mL of solution G, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce^{3+}, and the only resulting silicon compound is $Si(OH)_4$.

B.1 **Write** the balanced equation for the reaction of Na_2SiF_6 with $Ce_2(SO_4)_3$.

- **Reaction of CCl_4 with Na_2SiF_6**

 (Substance losses by e.g. evaporation are negligible during the following operations.)
 $Na_2SiF_6(x \, [g])$ was added to CCl_4 (500.0 g) and heated to $300 \, ^\circ C$ in a sealed pressure-resistant reaction vessel. The unreacted Na_2SiF_6 and generated $NaCl$ were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl_4 (solution H). The 29Si and 19F NMR spectra of solution H showed SiF_4 as the only silicon compound. In the 19F NMR spectrum, in addition to SiF_4, signals corresponding to $CFCl_3$, CF_2Cl_2, CF_3Cl, and CF_4 were observed (cf. Table 1). The integration ratios in the 19F NMR spectrum are proportional to the number of fluorine nuclei.

<table>
<thead>
<tr>
<th>19F NMR data</th>
<th>$CFCl_3$</th>
<th>CF_2Cl_2</th>
<th>CF_3Cl</th>
<th>CF_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration ratio</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

$$3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6$$ (8)

Solution H (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H₂SiF₆ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na₂SiF₆ (aqueous solution J).

The precipitate of unreacted Na₂SiF₆ and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution K; 10.0 L).

Then, additional precipitation titrations using solution G were carried out, and the endpoints of the titrations with G were as follows:
- For solution J (entire amount): 61.6 mL.
- For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

B.2 Calculate the mass of the NaCl produced in the reaction vessel (information underlined), and calculate the mass (x [g]) of the Na₂SiF₆ used as a starting material.

B.3 77.8% of the CCl₄ used as a starting material was unreacted. Calculate the mass of CF₃Cl generated.
Цахиур нь нүүрсэргэгчийн нэгэн аdíл 14-р бүлгийн элемент боловч тэдгээрийн шинж чанар эрс ялгатай байдаг.

А хэсэг

$R_1 - Si \equiv Si - R^1$ (R: органик халагч) гэх Si-Si гурвалсан холбоотой нэгдэл нь урвалын эндер идэвхтэй байдгаараа C-C гуравчийн холбоотой нэгдлүүдээс ялгатай. Жишээ нь үүнийг этилентэй урвалд оруулагдсан дөрвөн гишүүнтэй цагираг агуулах боломжтой. Молекул $R_2 - C \equiv C - R^2$-аар урвалд оруулагдсан үүсгэгдээ зөв байдаг.

$$\begin{align*}
R^1 - Si \equiv Si - R^1 & + H_2C=CH_2 \\
\implies & \begin{array}{c}
\text{Si} \equiv \text{Si} \\
R^1 & \text{R}^1
\end{array}
\end{align*}$$

$R^1 - Si \equiv Si - R^1$ бодисыг алкин (R²-C ≡ C-R²)-аар уйлдлээд дөрвөн гишүүнтэй цагирг яг бүхий A бодис эхийн завсрын бүтэндээ хэлбэрээр үүсдэг. A бодис нь $R^2 - C \equiv C - R^2$ молекултай урвалд орж B ба C изомеруудыг үүсгэж бөгөөд эдгээр нь хоёуллаа бензолной тестэй конъюгацилдсан цагирг
бутэцтэй бөгөөд “дисилабензол” гэж нэрлэдэг. \((R^1 - \text{Si})_2(R^2 - \text{C})_4\) гэж томьёологдох зураагаан гишүүнтэй цагираг агуулдаг.

\[
\begin{align*}
R^1-\text{Si} &\equiv \text{Si} - R^1 & R^2-\text{C} &\equiv \text{C} - R^2 & \rightarrow & A \quad R^2-\text{C} &\equiv \text{C} - R^2 & \rightarrow & B & + & C
\end{align*}
\]

\(^{13}\text{C}\) NMR шинжилгээгээр \(\text{Si}_2\text{C}_4\) зураагаан гишүүнтэй ундсэн цагираг нь \(B\) бодисынх хоёр, \(C\) бодисынх нэг сигнал өгсөн.

A.1 \(R^1, R^2, \text{Si}, \text{C}\) ашиглан \(A, B, C\) бодисуудын боломжит нэг резонанс бутцийн 9pt томьёог зурна уу.

A.2 Доор үзүүлсэн (Зураг 1) зарим ханаагүй системийн устөрөгчжүүлэх урвалын 7pt энталпийн варчлалтыг ашиглан бензол ба \(C\) бодисын \((R^1 = R^2 = \text{H} \text{гэж \(\text{узнэ} \)) ароматик тогтворжуулах \(\text{энэгийн энергийг зэрэг утгатайгаар төсөөлөө уу.} \)

\[
\begin{align*}
\text{H}_2\text{C} = \text{CH}_2 & + \text{H}_2 \rightarrow \text{H}_3\text{C} - \text{CH}_3 & \Delta H = -135 \text{ kJ mol}^{-1} & (1) \\
\text{H}_2\text{Si} = \text{CH}_2 & + \text{H}_2 \rightarrow \text{H}_3\text{Si} - \text{CH}_3 & \Delta H = -213 \text{ kJ mol}^{-1} & (2) \\
\text{H}_2\text{Si} = \text{SiH}_2 & + \text{H}_2 \rightarrow \text{H}_3\text{Si} - \text{SiH}_3 & \Delta H = -206 \text{ kJ mol}^{-1} & (3) \\
\text{C} & + 3 \text{H}_2 \rightarrow \begin{array}{c}
\text{C} \\
\text{C}
\end{array} & \Delta H = -173 \text{ kJ mol}^{-1} & (4) \\
\text{HSi} = \text{SiH} & + 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} - \text{SiH}_2 & \Delta H = -326 \text{ kJ mol}^{-1} & (5) \\
\text{HSi} = \text{SiH} & + 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} - \text{SiH}_2 & \Delta H = -368 \text{ kJ mol}^{-1} & (6) \\
\text{HSi} = \text{SiH} & + 3 \text{H}_2 \rightarrow \begin{array}{c}
\text{H}_2\text{Si} \\
\text{SiH}_2
\end{array} & \Delta H = -389 \text{ kJ mol}^{-1} & (7)
\end{align*}
\]
C бодисын ксилолийн уусмалыг халаахад изомержих урвалд орж, D ба E нэгдлүүдийн тэнцвэрээр холимогийг үүсгэн. Молийн харьцаа 50.0 °С-д $D : E = 1 : 40.0$ ба 120.0 °С-д $D : E = 1 : 20.0$ байна.

<table>
<thead>
<tr>
<th>A.3</th>
<th>D бодис нь E бодис болж хувиргах урвалын ΔH-г төөцөлно үү. ΔH температураас хамаарахгүй гэж үзнэ.</th>
</tr>
</thead>
</table>

C бодисоос D ба E болох изомержих урвал нь ямар ч σ холбоог таслаганүүд, π холбоог σ холбоо болгон хувиргах замаар явагддаг. 13C-ЦСР шинжилгээгээр D бодисын Si$_2$C$_4$ үндсэн хэлхэн нэг сигнал, E болон хоёр сигнал уулууллэв. D болон нэг үндсэн хэлхэн нэгдэл байхгүй бол E бодис нь нэг талаа хуваалцсан хоёр ширхэг нэгдэл байв.

<table>
<thead>
<tr>
<th>A.4</th>
<th>R1, R2, Si, C ашиглан D ба E бодисуудын бүтцийн томъёог зурна уу.</th>
</tr>
</thead>
</table>

B.3 Na_2SiF_6-ын уусмалын стандарт тогтоох:
- Бэлтгэх F усан уусмал: 0.855 г Na_2SiF_6 (188.053 г / моль) усанд уусгана. (Нийт ээлхүүн 200 мл)
- Ажлын явц
 - Бөмбөлжүүлж F уусмал дээр G уусмалыг 6.86 г Ce$_2$(SO$_4$)$_3$ (568.424 г / моль) усанд уусгана. (Нийт ээлхүүн 200 мл)
 - Цагаан уян 50 мл F уусмал дээр G уусмалыг дуслаар нэмж тунадасжуулах урвалыг хийнэ. Ксилол орж нь Ce$^{3+}$ интөг холбогдох индикаторын уусмал гүйцэтгэх. 18.8 мл G уусмал зарцуулагдсаны дараа уусмалын нэг нь түүнээс ягаан өнгөтэй болов. Ce^{3+} түүнээс ерөөгүйг агуулсан бинар нэгдэл байсан ба цахиурын нэгдэл нь зөвхөн Si(OH)$_4$ байв.

<table>
<thead>
<tr>
<th>B.1</th>
<th>Na_2SiF_6-ын Ce$_2$(SO$_4$)$_3$-тай урвалд орох урвалын тэгшитгэлийг бичиж 5pt тэнцүүлэн уу.</th>
</tr>
</thead>
</table>

Na$_2$SiF$_6$-ыг авч CCl$_4$ (500.0 г) дээр нэмж гардагаа үүсэн NaCl-ыг шүүж зайлуулав. Шүүгдэсийг 100 мл хүртэл CCl$_4$-өөр шингэлэв (H уусмал). H уусмалын Na ба 19F ЦСР спектрүүд SiF_4 нь цахиурын ганцаар нэгдэл болохыг харуулав. 19F ЦСР спектрүүд SiF_4-оос гадна FCF$_3$, CF$_2$Cl, CF$_3$Cl, CCl$_4$ харгалзах сигналууд ажилладаг (хүснэгт 1). 19F ЦСР спектрүүд хатарын нөлөөгийн цэгийн тоолын пропорционал байна.
SiF₄ гидролизын урвалд дараах тэгшитгэл (8)-ийн дагуу дагуу H₂SiF₆ үүсэдэг:

\[3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6 \]

(8)

\[\text{H уусмал (10 мл) дээр илуудал хэмжээний ус нэмж SiF}_4\text{-ийг бурэн гидролизод оруулсан. Усан уусмал дахь гидролизоос ус нэмэн H}_2\text{SiF}_6\text{-ийг салгасны дараа саармагжуулж, бурэн Na}_2\text{SiF}_6\text{ (усан уусмал) болгон хувиргав.} \]

Эхний шатанд шүүж зайлуулсан (доогуур зураастай) урвалд ороогүй Na₂SiF₆ ба NaCl-ын тунадасыг усанд бүрэн уусгаж усан уусмал (усамал K; 10.0 л) болгов.

Дараа нь G уусмалын ашиглан тунадасжих урвалын титрэлт хийхэд титрэлтэйн эцгийн цэгүүд дараах байдалтай байна:
· J уусмалд (бүх уусмал): 61.6 мл.
· 100 мл K уусмалд: 44.4 мл.

NaCl эсвэл SiO₂ зарэгцэн орших нь тунадасжих титрэлтэд ямар ч нөлөө үзүүлэхгүй гэдгийг анхаарна уу.

Б.2
Урвалын саванд (доогуур зураастай мэдээлэл) уусэн NaCl-ийн масс, эх бодис болгон ашигласан Na₂SiF₆-ын массыг (\(x\)) тус тус тооцоолно уу.

Б.3
Эх бодис болгосон ашигласан CCl₂-ийн 77.8 % нь урвалд ороогүй. Усээн CF₂Cl-ийн массыг тооцоолно уу.
Нууцлаг цахиур

А хэсэг

А.1 (9 pt)

А (3 pt) Б (3 pt) С (3 pt)

А.2 (7 pt)

C₆H₆ : кЖ моль⁻¹, С : кЖ моль⁻¹
ΔΗ = кж моль⁻¹

A.3 (6 pt)

A.4 (10 pt)

D (5 pt) E (5 pt)
Part B

<table>
<thead>
<tr>
<th>Section</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>5 pt</td>
</tr>
<tr>
<td>B.2</td>
<td>15 pt</td>
</tr>
</tbody>
</table>

(Ургэлжлэл дараагийн хуудсан)
B.2 (cont.)

NaCl : r, Na₂SiF₆ : r
CF$_3$Cl: __________ g
ICHo
Problem 6
Cover sheet

Please return this cover sheet together with all the related question sheets.
The Solid-State Chemistry of Transition Metals

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>C.1</th>
<th>C.2</th>
<th>C.3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (\(M^{n+}\)) in the magma is incorporated into the silicate minerals. The \(M^{n+}\) studied in the problem are coordinated by oxide ions (\(O^2-\)) and adopt a four-coordinate tetrahedral (\(T_d\)) geometry in the magma and six-coordinate octahedral (\(O_h\)) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration.

The distribution coefficient of \(M^{n+}\) between the silicate minerals and magma, \(D\), can be expressed by:

\[
D = \frac{[M]_s}{[M]_l}
\]

where \([M]_s\) and \([M]_l\) are the concentrations of \(M^{n+}\) in the silicate minerals and the magma, respectively. The table below shows the \(D\) values of Cr\(^{2+}\) and Mn\(^{2+}\) as examples.

<table>
<thead>
<tr>
<th></th>
<th>Cr(^{2+})</th>
<th>Mn(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>7.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Let Δ_O and CFSE^O be the energy separation of the d-orbitals of M^{n+} and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

A.1 **Calculate** $|\text{CFSE}^O - \text{CFSE}^T| = \Delta \text{CFSE}$ in terms of Δ_O for Cr$^{2+}$, Mn$^{2+}$, and Co$^{2+}$; assume $\Delta_T = 4/9 \Delta_O$.

A.2 A linear relationship is observed by plotting $\ln D$ against $\Delta \text{CFSE} / \Delta_O$ in the Cartesian coordinate system shown below. **Estimate** D for Co$^{2+}$.

```
<table>
<thead>
<tr>
<th>ln(D)</th>
<th>ΔCFSE / ΔO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>2.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>
```

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

A.3 **Choose** the appropriate set of lattice enthalpies [kJ mol$^{-1}$] from one of the options (a) to (f).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
Part B

A mixed oxide A, which contains La$^{3+}$ and Cu$^{2+}$, crystallizes in a tetragonal unit cell shown in Fig. 1. In the $[\text{CuO}_6]$ octahedron, the Cu–O length along the z-axis (l_z) is longer than that of the x-axis (l_x), and $[\text{CuO}_6]$ is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals ($d_{x^2−y^2}$ and d_{z^2}).

A can be synthesized by thermal decomposition (pyrolysis) of complex B, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of B in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO$_2$. The total weight loss during the formation of A from B is 63.6%. It should be noted that only water and CO$_2$ are released in the pyrolysis reaction.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Write the chemical formulae for A and B.</td>
<td>6pt</td>
</tr>
<tr>
<td>B.2</td>
<td>Calculate l_x and l_z using Fig. 1.</td>
<td>4pt</td>
</tr>
<tr>
<td>B.3</td>
<td>For Cu$^{2+}$ in the distorted $[\text{CuO}6]$ octahedron in A of Fig. 1, write the names of the split e_g orbitals ($d{x^2−y^2}$ and d_{z^2}) in (i) and (ii), and draw the electron configuration in the dotted box in your answer sheet.</td>
<td>4pt</td>
</tr>
</tbody>
</table>
A is an insulator. When one La$^{3+}$ is substituted with one Sr$^{2+}$, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr$^{2+}$-doped A shows superconductivity below 38 K. When a substitution reaction took place for A, 2.05×10^{27} holes m$^{-3}$ were generated.

B.4 Calculate the percentage of Sr$^{2+}$ substituted for La$^{3+}$ based on the mole ratio in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

Cu$_2$(CH$_3$CO$_2$)$_4$ is composed of four CH$_3$CO$_2^-$ coordinated to two Cu$^{2+}$ (Fig. 2A). Cu$_2$(CH$_3$CO$_2$)$_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four CH$_3$CO$_2^-$ and an axis passing through the two Cu$^{2+}$, all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of CH$_3$CO$_2^-$, a “cage complex” is formed. The cage complex Cu$_4$(L)$_4$ is composed of planar dicarboxylate L$_1$ (Fig. 2B) and Cu$^{2+}$ (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L$_1$. Note that hydrogen atoms are not shown in Fig. 2.
C.1 The θ of the planar dicarboxylate L_2 below is fixed to 90°. If the composition of the cage complex formed from L_2 and Cu$^{2+}$ is $\text{Cu}_n(L_2)_m$, give the smallest integer combination of n and m. Assume that only the CO$_2$ groups of L_2 form a coordination bond to Cu$^{2+}$ ions.

![Diagram of L2 with $\theta = 90^\circ$]
A zinc complex, $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$, contains four tetrahedral Zn^{2+}, six CH_3CO_2^-, and one O^2- (Fig. 3A). In $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$, the O^2- is located at the origin, and the three axes passing through the carbon atoms of CH_3CO_2^- are oriented orthogonal relative to each other. When p-benzenedicarboxylate (Fig. 3B, L_3, $\theta = 180^\circ$) is used instead of CH_3CO_2^-, the Zn^{2+} clusters are linked to each other to form a crystalline solid (X) that is called a “porous coordination polymer” (Fig. 3C). The composition of X is $[\text{Zn}_4\text{O}\text{(L}_3\text{)}_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

Fig. 3

C.2 X has a cubic unit cell with a side length of a (Fig. 3C) and a density of 0.592 g cm^{-3}. Calculate a in [cm].

C.3 X contains a considerable number of pores, and 1 g of X can accommodate 3.0×10^2 mL of CO$_2$ gas in the pores at 1 bar and 25 °C. Calculate the average number of CO$_2$ molecules per pore.
Шилжилтийн металлн нэгдлийн хатуу төлөвийн хими

<table>
<thead>
<tr>
<th>Нийт онооны 13 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
</tbody>
</table>

Сакуражима арал дахь галт уул

А хэсэг

Япон бол дэлхийд хамгийн олон галт уултай улс юм. Силикатын эрдэсүүд галт уулын магмаас талсихад магма дахь шилжилтийн металлн ионуудын нэг хэсг (M$^{n+}$) нь силикатын эрдсийн бүрэлдэхүүнц орж ирдэг. Энэ бодлогод судлах M$^{n+}$ нь оксид ион (O$^{2-}$)-оор хүрээлэн, магма дөрөн хүрээлэн атомтай тетраэдр (T$_d$) геометртэй, силикат эрдсүүдэд зургаан хүрээлэн атомтай октаэдр (O$_h$) геометртэй, хоёулаа ендер спинт электрон конфигурацтай байдаг. Силикат эрдс ба магмын хоорондох M$^{n+}$-ийн түгэлтийн коэффициентийг дараах яамаа байдлаар илэрхийлж болно:

$$D = \frac{[M]_s}{[M]_l}$$

энд [M]$_s$ ба [M]$_l$ нь харгалзан силикат эрдс ба магм дахь M$^{n+}$-ийн концентрац юм. Доорх хүснэгтэд Cr$^{2+}$ ба Mn$^{2+}$-ийн хувьд D-ийн утгыг харуулав.

<table>
<thead>
<tr>
<th>Cr$^{2+}$</th>
<th>Mn$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Октаэдр орон дахь M^{n+}-ийн d-орбиталын хувваагдлын энергий нь Δ_O, талст орны тогтворжилтын энергий (CFSE) нь CFSEO байна гэе. Харин тетраэдр T_4 оронд харгалзан Δ_T ба CFSET байна гэе.

A.1
Cr^{2+}, Mn$^{2+}$, Co$^{2+}$-ийн хувьд $\left|\text{CFSE}^O - \text{CFSE}^T\right| = \Delta\text{CFSE}$-ийг тооцоолж Δ_O-оор 6pt илэрхийлнэ уу.
$\Delta_T = \frac{4}{9}\Delta_O$ гэж үзэн.

A.2
Дараах зурагт үзүүлсэн Декартын координатын систем дээр $\ln D$-ийн $3pt$ $\Delta\text{CFSE}/\Delta_O$-ээс хамаарах хамаарлыг зурахад шугаман хамаарал ажиглаж да.
Co^{2+}-ийн хувьд D-г нь тооцоолно уу.

A.3
(a) - (f) сонголтуудас тохирох талст төрөл энталпий [кЖ моль$^{-1}$]-ийн багцыг 3pt сонгоно уу.

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
В хэсэг

La³⁺ ба Cu²⁺ агуулсан холимог оксид A нь Зураг 1-д үзүүлсэн тетрагональ эгэл үүртэй талстаар талст-жидаг.

\[\text{[CuO}_6 \text{]} \text{ октаэдрт } z \text{ тэнхлэгийн дагуу } \text{Cu} - \text{O зай (} l_z \text{) нь } x \text{ тэнхлэгийн дагуу } l_x \text{-наас илуу урт бөгөөд } \text{[CuO}_6 \text{]} \text{ нь зөв октаэдр } O_h \text{ геометрээс гажсан байдаг. Энэ гажилт нь } e_g \text{ орбиталууд (} d_{x^2−y^2} \text{ ба } d_{z^2} \text{-ийг } yl \text{ мөхөөгдсөн болгодог.} \]

![Zuраг 1](image)

Металлын хлоридуудыг сквараины хүчил C₄H₂O₄ (хоёр суурьт хүчил) агуулсан аммиакийн шингэрүүлсэн уусмалд холиход B комплекс угсэн ба B-г дулааны задрал (пиролиз)-д оруулж A-г синтезлэдг.

Хуурай агаарт 200°C хүрэх температурт B-ийн пиролизоор талстжсан усаа алдсанаас болж жин нь 29.1%-нар багасах, цааш нь 700°C хүрэл халахад CO₂ ялгарах нь багасдаг. B-ээс A угсэн нийт жинтэйгийн алдагдаал 63.6% байна. Пиролизийн урвалд зөвхөн угсэн үс ба CO₂ ялгарсан болохыг анхаарч байна.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>A болон B-ийн химийн томьёг бичээ уу.</td>
</tr>
<tr>
<td>B.2</td>
<td>Зураг 1-ийг ашиган (l_x) болон (l_z)-ийг төоцөлд оруулаа.</td>
</tr>
<tr>
<td>B.3</td>
<td>Зураг 1-д үзүүлэн A эгэл үүр дэх [\text{CuO}6 \text{]} \text{ гажсан октаэдрийн Cu}^{2+}-ийн хувьд (e_g) орбитал ((d{x^2−y^2} \text{ ба } d_{z^2})-ийн хувьд (i) ба (ii)-д зурж орбиталуудын нэрийг бичиж, хариулуултанд хуудсанд дэх тасархай зургаа гарган хайрцагт электрон бүтцийн диаграммыг зурнаа.</td>
</tr>
</tbody>
</table>
A нь тусгаарлах юм. Нэг La3+ ионыг нэг Sr2+ ионоор халахад талст торд цахилгаан дамжуулагч чадвартай нэг нух үүсэн. Уний дүнээд Sr2+-жуулсан A нь 38 K-ээс доош температурт хэт дамжуулагч болдог. Халах урвал явагдах A-д нүх нүхний концентрац 2.05 × 1027 м−3 байна.

В.4 Халах урвал давхь молийн харьцаанд үндэслэн Sr2+ -эр халагдсан La3+-ийн долойг тооцоолоо. Халах урвалын ионуудын валент болон талстын бүтэц вэргчлэгддэгүйг анхаарна уу.

С хэсэг
Cu\textsubscript{2}(CH\textsubscript{3}CO\textsubscript{2})\textsubscript{4} нь дөрвөн CH\textsubscript{3}CO\textsubscript{2}−-оор хурээлэгдсэн хоёр Cu2+-ээс тогтоно (Зураг 2-ын A). Дөрвөн CH\textsubscript{3}CO\textsubscript{2}−-ийн нууртэригчиийн атомууд хоёр тэнхэлтэй дагуу, хоёр Cu2+ нь негээ тэнхэлтэй дагуу тус тус байрлана, бүгд бие биетэй харилцан ортогонал (перпендикуляр) чиглэл бихий
Cu\textsubscript{2}(CH\textsubscript{3}CO\textsubscript{2})\textsubscript{4} нь бүтцийн нөгөө тэнхэлтийн дагуу бүрэн биетэй байна.

CH\textsubscript{3}CO\textsubscript{2}−-ын оронд дикарбоксилатын лиганд хэрэглэхд "торын комплекс" уусдаг. Cu\textsubscript{4}(L1)\textsubscript{4} (Зураг 2-ын C) гэсэн торын комплекс нь хавтгай дикарбоксилат L1 (Зураг 2-ын B) ба Cu2+-ээс тогтоно. Зураг 2-ын B-д карбоксилатын координацияны сумаар заасан хоёр чиглэллүү хоорондох \(\theta\) еңцөг нь төрөн комплексын бүтцийг тодорхойлдог. L1-ийн хувьд \(\theta\) еңцөг нь 0° байна. Зураг 2-г устгэлччийн атомыг харуулаагүй болохыг анхаарна уу.
Доорх хавтгай дикарбоксилат \(L_2 \)-ийн \(\theta \) нь 90° байдаг. Хэрэв \(L_2 \) ба \(Cu^{2+} \)-ээс уусээн торын комплексын найрлага нь \(Cu_n(L_2)_m \) байдаг бол \(n \) ба \(m \)-ийн хамгийн бага бүхэл утгыг тодорхойлно уу.

\(L_2 \)-ийн зөвхөн \(CO_2^- \) бүлгүүд \(Cu^{2+} \) ионтай координацын холбоо уусгдаг гэж узнэ.

\[\theta = 90° \]
Цайрын комплекс, Zn₄O(CH₃CO₂)₆ нь тетраэдр байрлалтай дервэн Zn²⁺ зургаан CH₃CO₂⁻, нэг O²⁻ агуулдаг (Зураг 3-ын А). Zn₄O(CH₃CO₂)₆⁻д O²⁻ нь тэнхлэгийн эхэл дээр байрладаг ба гурван тэнхлэгийн дагууд нууристэрэгчийн атом нь байрлах CH₃CO₂⁻-ууд нь хоорондоо харилицан ортогонал чиглэлтэй байна.

CH₃CO₂⁻-ийн оронд n-бензолдикарбоксилат (Зураг 3-ын B, L₃, θ = 180°)-ийг ашиглахад Zn²⁺ кластерүүд хоорондоо холбодож "сувэрхэг координацын полимер" (Зураг 3-ын C) гэж нэрлэдэг талс хатуу (X)-г уусдаг. X-ийн найрлага нь [Zn₄O(L₃)₃]ₙ бегед нано хэмжээнэй хөндий бухий куб талст бутэцгүй. Зураг 3-ын D-д нэг хөндийг бөмбөрцөг хэлбэрээр, Zn²⁺-ийн кластерийг Зураг 3-ын C, D-д хар саарал олон талтаар тус тус дурсэлсэн болно. Устерэгчийн атомыг Зураг 3-т харуулаагүй болохыг анхаарна уу.

Зураг 3

C.2	X нь хажуу талын урт нь α байх (Зураг 3-ын C), 0.592 g cm⁻³ нягттай куб эгэл 5pt ууρээс бүрдэнэ. α-ийг [см]-ээр өөрөөллөө уу.
C.3	X нь нэлээд олон тооны хөндий агуулдаг бегед 1 бар даралт, 25°C-т 1 г X нь хөндийд ар 3.0 × 10² ml CO₂ хийг багтаах өдөртэй. Нэг хөндийн байх CO₂-ын молекулын дундаж тоог өөрөөллөө уу.
Шилжилтийн металлын хатуу төлөвийн химі

А хэсгэг

А.1 (6 pt)

$\text{Cr}^{2+} : \Delta_0$, $\text{Mn}^{2+} : \Delta_0$, $\text{Co}^{2+} : \Delta_0$
\[D : \]

\[\ln D \]

\[\Delta CFSE / \Delta \]
B хэсэг

B.1 (6 pt)

A: ___________________________, B: ___________________________

B.2 (4 pt)

\[l_x = \text{________}_\text{nm}, \quad l_z = \text{________}_\text{nm} \]
B.3 (4 pt)

(i) : ________________________________, (ii) : ________________________________

\[\text{Energy} \]

\[e_g \]

\[(i) \]

\[(ii) \]

B.4 (4 pt)
Схэсг

\textbf{C.1 (5 pt)}

\[n = \quad , \quad m = \quad \]

\textbf{C.2 (5 pt)}

\[a = \quad \text{cm} \]
C.3 (5 pt)
Please return this cover sheet together with all the related question sheets.
Playing with Non-benzenoid Aromaticity

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
</tbody>
</table>

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

![Photo courtesy: Tohoku Univ.](image)

Part A

Lineariifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.
Inula linariifolia

A.1 Draw the structures of 2 and 6 and clearly identify the stereochemistry where necessary.

Then, ketone 4 is converted into ester 15. Compound 8 (molecular weight: 188) retains all the stereocenters in 7. Compounds 9 and 10 have five stereocenters and no carbon-carbon double bonds. Assume
that H_2^{18}O is used instead of H_2^{16}O for the synthesis of 18O-labelled-linearifolianones 13 and 14 from 11 and 12, respectively. Compounds 13 and 14 are 18O-labelled isotopomers. Ignoring isotopic labelling, both 13 and 14 provide the same product 15 with identical stereochemistry.

\[\text{4} \rightarrow \text{7} \rightarrow \text{8} \]

\[\text{8} \rightarrow \text{9} + \text{10} \]

\[\text{9} \rightarrow \text{11} \]

\[\text{10} \rightarrow \text{12} \]

\[\text{16O-13/18O-14} (\text{C}_{15}\text{H}_{22}^{16}\text{O}_3) \rightarrow \text{15} \]
A.2 **Choose** the appropriate structure for A. **2pt**

I $\text{F}_3\text{C-S-OH}$
II $\text{F}_3\text{C-S-NH}_2$
III O=S-CF_3
IV O=S-CF_3

A.3 **Draw** the structures of 8-14 and clearly identify the stereochemistry where necessary. Also, **indicate** the introduced 18O atoms for 13 and 14 as shown in the example below. **19pt**

![Structure 18](image)
Part B

Compound 19 is synthesized as shown below. In relation to non-benzenoid aromaticity, 19 can be used as an activator for alcohols, and 20 was converted to 22 via ion-pair intermediate 21. Although the formation of 21 was observed by NMR, 21 gradually decomposes to give 18 and 22.

1H NMR (CD3CN, ppm) 20: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)
21: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

B.1 Draw the structures of 17–19 and 21. Identifying the stereochemistry is not necessary.
Бензолын бус ароматик шинжээр тоглоцгооё

<table>
<thead>
<tr>
<th>Асуульт</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Профессор Нозоэ (1902-1996) нь органик химид маш өргөн тархсан бензолын бус ароматик нэгдлүүдийн судалгааны эхлэлийг тавьсан.

Хүндэтгэлийн зураг: Тохокүгийн Их Сургууль

А хэсэг

Лайнерийфолианон нь зажлуур навчийн зоосон цэцг (Inula linariifolia)–ээс ялган авсан өвөрмөц бүтэцтэй байгалийн нэгдлэй юм. Валенцин (1)-эс нэг шаттай урваллаар 2 нэгдэл үүсдэг ба 3 нэгдлээр дамжин гурван шаттай хувирлаар 4 кетон үүсдэг. Эримофиллен (5) нь мөн дөрөө шаттай хувирлаар 6 нэгдэл үүсдэг.
Зажлуур навчт зоосон цэцэг (*Inula linariifolia*)

А.1 2 ба 6 нэгдлийн бутцийг дурсэлж шаардлагатай байрлал дахь стереохимийг нь тогтооно уу.
хөөрөн жийн давхар холбоо байхгүй. $H_2^{16}O$ оронд $H_2^{18}O$ ашиглан 11 ба 12 нэгдлүүдээс ^{18}O-тэмдэгт атомтай лайнерийфолианонууд болох 13 ба 14 нэгдлүүдийг синтезлэдгэ. 13 ба 14 нь ^{18}O-тэмдэгт атомтай изотопомерүүд юм. Изотоп тэмдэгт атомыг нь тооцохгүй бол 13 ба 14 нь стереохимийн хувьд ихил 15 нэгдлийг үүсгэдг.

\[\text{Si-N-Si} \]

(KHMDS)

\[\text{THF, } -78 \, ^{\circ}C \]

\[\text{O:CF}_3 \]

\[\text{O:O} \]

\[\text{Li} \]

\[\text{Cl} \]

\[\text{OH} \]

\[\text{ClO}_2 \text{HCO}_3 \]

\[\text{CH}_2\text{Cl}_2, 0 \, ^{\circ}C \]

\[C_{14}H_{20}O \]

\[C_{14}H_{20}O \]

\[\text{Si-CF}_2\text{Br} \]

\[\text{THF, 80 } ^{\circ}C \]

\[C_{15}H_{20}F_2O \]

\[C_{15}H_{20}F_2O \]

\[\text{H}_2^{18}O, \text{THF} \]

\[C_{15}H_{22}^{18}O_n^{16}O_{3-n} \]

(\(n = 0 \sim 3 \))

\[C_{15}H_{22}^{18}O_n^{16}O_{3-n} \]

(\(n = 0 \sim 3 \))

\[\text{CH}_3\text{OH} \]

\[\text{OH} \]

\[\text{OH} \]

\[\text{H} \]

\[\text{OCH}_3 \]

\[\text{16O-13/18O-14} \]

\[(C_{15}H_{22}^{16}O_3) \]

\[15 \]
A.2 А нэгдлийн тохирох бүтцийг сонгоно уу.

<table>
<thead>
<tr>
<th>I</th>
<th>F₃C-S-OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>F₃C-S-NH₂</td>
</tr>
<tr>
<td>III</td>
<td>O-S-CF₃</td>
</tr>
<tr>
<td>IV</td>
<td>O-S-CF₃</td>
</tr>
</tbody>
</table>

A.3 8-14 нэгдлүүдийн бүтцийг дурсэлж, шаардлагатай байрлал дахь стереохимийг нь тогтооно уу. Мөн 13 ба 14 нэгдэл дэх ¹⁸O атомыг доорх зурагт узуулсэн шиг тэмдэглэнэ уу.
В хэсэг

19 нэгдлийг дор үзүүлсний дагуу синтезлэдэг. Бензолын бус ароматиктай холбоотойгоор, 19 нэгдлийг спиртийн идэвхжүүлэгчээр ашиглах 20 нэгдлийг ионы хос завсрын бутээдхүүн 21 нэгдлээр дамжуулан 22 нэгдэл хувиргадаг. 21 нэгдэл үүсдэг нь ЦСР спектрээр батлагдсан ч аажим задарч 18 ба 22 нэгдлүүдийг үүсгэдэг.

\[\text{17} \quad \text{C}_{15}\text{H}_{12}\text{Br}_2\text{O} \]

\[\text{18} \quad \text{C}_{15}\text{H}_{10}\text{O} \]

\[\text{19} \quad \text{C}_{15}\text{H}_{10}\text{Cl}_2 \]

\[\text{21} \quad \text{C}_{15}\text{H}_{10}\text{Cl}_2 \]

\[\text{22} \quad \text{C}_{15}\text{H}_{10}\text{Cl}_2 \]

1\text{H NMR (CD}_3\text{CN, ppm)} \quad 20: \delta 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)

21: \delta 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

В.1 17–19 ба 21 нэгдлүүдийн бүтцийг дурсэлэн үү. Стереохими шаардлагагүй. 10pt
Бензолын бус ароматик шинжээр тоглоцгооё

А хэсэг

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 (5 pt)</td>
<td></td>
</tr>
<tr>
<td>2 (2 pt)</td>
<td>6 (3 pt)</td>
</tr>
</tbody>
</table>

A.2 (2 pt)
<table>
<thead>
<tr>
<th>В хэсэг</th>
<th>Б.1 (10 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>18</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>19</td>
<td>(3 pt)</td>
</tr>
<tr>
<td>21</td>
<td>(3 pt)</td>
</tr>
</tbody>
</table>
ICHo
Problem 8
Cover sheet

Please return this cover sheet together with all the related question sheets.
Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, \(n \) represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.
Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

A.1 **Draw** the structures of A–C. Stereoisomers should be distinguished. 9pt

A.2 Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The 1H NMR chemical shifts of D are listed below. **Draw** the structure of D.

<table>
<thead>
<tr>
<th>δ, ppm in CS₂, r.t.</th>
<th>8.85 (2H)</th>
<th>8.23 (2H)</th>
<th>8.07 (2H)</th>
<th>8.01 (2H)</th>
<th>7.97 (2H)</th>
<th>7.91 (2H)</th>
</tr>
</thead>
</table>

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (M) or (P) as shown below.

![diagram](image)

(M) (P)

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.
Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound E contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as \((P, P, P)\) as shown below.

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of \(F\), \((P)-F\), multiple helicene \(G\) \((C_{66}H_{36})\) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, identify all the possible stereoisomers of \(G\) formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and \(M\) and \(P\) labels according to the same numbering. For instance, the other stereoisomers of \(E\) should be listed as \((1, 2, 3) = (P, M, P), (P, M, M), (P, M, P), (M, M, P), (M, M, P), (M, P, P), \) and \((M, P, M)\).
Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 **Draw** the structure of intermediate I (its stereochemistry is not required). 3pt
Starting from the optically active precursor J, the same reaction sequence gives the optically active sumanene derivative K. The stereocenters in J suffer no inversion during the metathesis reaction. **Draw** the structure of K with the appropriate stereochemistry.
Динамик органик нэгдлүүд ба тэдгээрийн хираль чанар

<table>
<thead>
<tr>
<th>Нийт онооны 11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэлгээ</td>
</tr>
</tbody>
</table>

А хэсэг

Фото-урвал нь дараах жишээнд узүүлсэнцэй адил аар явагддаг.
Жич: Даалгавар 8-ын бүх асуулт хариулахдаа хелицен шиг дан болон давхар холбоог ээлжлэн зураарай. Коньюгацилгдсан π системийг тэмдэглэдэг цагирагийг ашиглахгүй.

| A.1 | A–C нэгдлүүдийн бүтцийг дурсэлэн яу. Стереоизомеруудийг ялгаж бичнэ. 9pt |

4-өөс дээш тоотой [n]карбохелицин нь хираль баганан хроматографиар ялгах аргыг профессор Ёошио Окамото боловсруулсан юм.

Хүндэтгэлийн зураг: Японы шагналын сан

1,2-дигомбензолын никель-катализатортай тримержилтээр трифенилен үүсдэг. F нэгдлийн энантиомер (P)-F-ийг яг ийм урвалд оруулж олон төвт хелицен G (C_{66}H_{36})-г гаргав. Урвалын явцад стерео изомерүүдийн хоорондын хувирал явдаггүй бөгөөд G нэгдлийн боломжит бух стереоизомерүүдийг давхардуулалгүйгээр тогтоно уу. Дээрх жишээн дэх нэгдлийн дугаарлалтыг ашиглан хираль чанарыг нь нэг изомерт бурэн дурслаж бусад изомерүүдийг нь ул дугаартаа ундыслэн M ба P эмдэлгээгээр бичж жагсааж бичнэ. Жишээлбэр, E нэгдлийн стерео изомерүүдийг (1, 2, 3) = (P, M, P), (P, M, M), (P, M, P), (M, M, P), (M, P, P), (M, P, M) ба (M, P, M) гэж тэмдэлж болно.

Рутини (Ru*) катализатор ашигласан жишээ синтезийг дор узуулэв.

В.1
Завсрын бутээдэхүүн I -ийн бутэц (стереохими шаардлагуу)-ийг 3рт дурсэлэн үү.
Динамик органик нэгдлууд ба тэдгээрийн хираль чанар

А хэсэг

<table>
<thead>
<tr>
<th>A (3 pt)</th>
<th>B (3 pt)</th>
<th>C (3 pt)</th>
</tr>
</thead>
</table>

A.1 (9 pt)

A.2 (3 pt)
A3 (7 pt)
В хэсэг

В.1 (3 pt)

В.2 (4 pt)
Please return this cover sheet together with all the related question sheets.
Likes and Dislikes of Capsule

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
</tbody>
</table>

Score

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds 1 and 2 were synthesized as U-shaped molecules with different sizes. Compound 3 was prepared as a comparison of 1 and the encapsulation behavior of these compounds was investigated.
The synthetic route to 2 is shown below. The elemental composition of compound 9: C; 40.49%, H; 1.70%, and O; 17.98% by mass.
A.1 **Draw** the structures of 4-9; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of p-methoxybenzyl group shown in the scheme above.

In the mass spectrum of 1, the ion peak corresponding to its dimer (1₂) was clearly observed, whereas an ion peak for 3₂ was not observed in the spectrum of 3. In the ¹H NMR spectra of a solution of 1₂, all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3. These data indicate that hydrogen bonds are formed between the NH moieties of 1 and atoms X of another molecule of 1 to form the dimeric capsule.

| A.2 | **Circle** all the appropriate atom(s) X in 1. | 2pt |
| A.3 | **Give** the number of the hydrogen bonds in the dimeric capsule (1₂). | 2pt |
The dimeric capsule of 1 (1₂) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

\[Z + 1₂ \rightarrow Z@1₂ \]

The equilibrium constant of the encapsulation of Z into 1₂ is given as below:

\[K_a = \frac{[Z@1₂]}{[Z][1₂]} \]

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1₂ in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound 2 also forms a rigid and larger dimeric capsule (2₂). The ¹H NMR spectrum of 2₂ was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H⁹ proton of 2 in the above solvents are summarized below, and no other signals from the H⁹ in 2, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

<table>
<thead>
<tr>
<th>solvent</th>
<th>δ (ppm) of H⁹</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆D₆</td>
<td>4.60</td>
</tr>
<tr>
<td>C₆D₅F</td>
<td>4.71</td>
</tr>
<tr>
<td>C₆D₆ / C₆D₅F</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 Determine the number of C₆D₆ and C₆D₅F molecules encapsulated in 2₂ giving each H⁹ signal. 3pt
1H NMR measurements in C$_6$D$_6$ revealed that 2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@2] denotes a species containing one or more solvent molecules.

\[
K_a = \frac{[Z@2]}{[Z][\text{solvent}@2]}
\]

(3)

Similarly, the K_a values of CH$_4$ and 1 given as eq (2) at various temperatures in C$_6$D$_6$ were also determined by 1H NMR measurements. The plots of the two association constants (as ln K_a vs 1/T) are shown below.

No C$_6$D$_6$ molecule is encapsulated in 1. In line II, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line II is (3). Therefore, line I corresponds to (4), and line II corresponds to (5).

A.5 Choose the correct options in gaps (1)–(5) in the following paragraph from A and B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(2)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(3)</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>(4)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
</tbody>
</table>
Капсулын дуртай болон дургүй зүйлс

<table>
<thead>
<tr>
<th>Асуулт</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Онго</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Сайн хуухдуд ингэхгүй байдаг, гэхдээ та теннисний бөмбөгийг зураасны дагуу задалбал U хэлбэртэй хоёр хэсэт хуваагдана.

Дээрх санаанд үндсэлэн өөр өөр хэмжээтэй U хэлбэрийн молекулууд болох 1 ба 2 нэгдлүүдийг нийлэж гарган авчээ. 3 бодисыг 1 бодистой харьцуулахын тулд гарган авсан бөгөөд эдгээр нэгдлүүдийн капсул уусгээ шинж чанарыг харьцуулан судлав.
2 нэгдлийг нийлэгжулэх схемийг доор харуулав. 9 бодисын элементийн найрлага массын хувирг C 40.49%, H 1.70%, O 17.98% байдаг.
4-9 бодисуудын бүтцийг зурна уу: стереохимийг зурахгүй орхиж болно. Дээрх схемд харуулсан пара-метоксибензил бүлгийн бүтцийг бүхэлд нь зурахын оронд "PMB" товчлолыг ашиглана.
1 бодисын масс спектр түүний димер (1₁)-т харгалзах ионий пик тод ажилгагдан бол 3 бодисын спектр 3₂-ын ионий пик ажилгагдаагүй. 1₂ уусмальнь ́Н ЦСР спектр 1 бодист байх буух НН булгийн протонууд эквивалент хэмжээтэй ажилгагдан ба химийн шилжилт нь 3 бодисын НН протоныхоос эрс ялгаатай байна. Эдгээр егэдлүүдээс харахад 1 бодисын нэг молекулын NH нь 1 бодисын өөр нэг молекулын X атомтай устөрөгчийн холбоогоор холбоогдон димер капсулуу үүсэдэг нь харагдана.

<table>
<thead>
<tr>
<th>A.2</th>
<th>1 бодисын тохирхуу X атом(ууд)-ыг дууийлна уу.</th>
<th>2pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3</td>
<td>Димер капсулуу 1₂-д хэдэн ширхэг устөрөгчийн холбоогдоо үүсэдэг вэ?</td>
<td>2pt</td>
</tr>
</tbody>
</table>
Димер капсула 1(1₂) нь тохирох жижиг молекул Z-ийг багтаах дотоод зэйт. Энэ үзэгдлийг дараах тэгшитгэлээр илэрхийлэв:

\[Z + 1₂ \rightarrow Z@1₂ \]

(1)

Z-ийг 1₂ капсул дотор багтаах тэнцэрийн тогтмол дараах байдлаар өгөгджээ:

\[K_a = \frac{[Z@1₂]}{[Z][1₂]} \]

(2)

Молекулыг капсулул багтаж байгаа ЦСР спектроскопоор хянах боломжтой. Жишээлбэл, \(C₆D₆ \) дахь 1₂ нь СН₄ нэмэхээс өмнө ба дараа ¹H ЦСР спектрт өөр өөр сигнал өгдөг. Жишээлбэл, \(C₆D₆ + C₆D₅F + C₆D₆F \) уусгачуудад хэмжээн бага бусад бүх нөхцлийг тогтмол байлгасан. 2 бодисын дээрх уусгачууд дахь \(H^a \) протон нь химийн шилжилтийг дөрөөс харуулав, дөрөөгээр 2 бодисын \(H^a \) протон нь сигнал илэртэй. Капсулын дотор боловсорт хамгийн их тооны уусгачийн молекулаар дүүргэгдэж, сигнал бүр нэг уусгалын харгалзан гэж үзэн.

<table>
<thead>
<tr>
<th>уусгач</th>
<th>(H^a-H^δ) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₆D₆)</td>
<td>4.60</td>
</tr>
<tr>
<td>(C₆D₅F)</td>
<td>4.71</td>
</tr>
<tr>
<td>(C₆D₆/C₆D₅F)</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

А.4 2₂ капсулын \(H^a \) сигналаас багтаасан \(C₆D₆ \) ба \(C₆D₅F \) молекулуудын тоог 3рт тодорхойлоо уу.
1 НЦР хэмжилтийг C₆D₆-д уусан хийсэнээр 2ₐ нь 1-адамант карбон хүчил (AdA)-ийн нэг молекулыг харилцан угийн гэмтэлд бөгөөд доор илэрхийлсэн ассоциацийн тогтмол (Kₐ)-ийг яан бурийн температур тодорхойлох болно. [solvent@2ₐ] нь нэг буюу хэд хэдэн уусгачийн молекул агуулсан байгааг илэрхийлэн.

\[
K_a = \frac{[Z@2ₐ]}{[Z][solvent@2ₐ]} \tag{3}
\]

Унтээ адилаар CH₄ ба 1₂ бодисын C₆D₆-д 1 НЦР хэмжилтээр Kₐ угтуудыг яан бурийн температур тодорхойлохгүй хэмжих (2D)-д ягсэн. Хөөр ассоциацийн тогтмолыг (In Kₐ-ын 1 / T-эс хамаарах хамаар) зураан дүгнэлт (2)-д өгсөн. Хоёр ассоциацийн тогтмолыг (ln Kₐ-ны 1 / T-эс хамаар) зураан дүгнэлт (2)-д өгсөн. Дөрөө Харуулав.

1₂ капсул C₆D₆ молекул өрөгүй. II шугаманд энтропийн өөрчлөл (ΔS) нь (1) ба энтальпийн өөрчлөл (ΔH) нь (2). II шугамны капсулилтийн хөдөлгөч үч нь (3) болохыг илэрхийлэн. Тиймээс, I шугам (4), II шугам (5)-т харгалзана.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>эрэг</td>
<td>серг</td>
</tr>
<tr>
<td>(2)</td>
<td>эрэг</td>
<td>серг</td>
</tr>
<tr>
<td>(3)</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>(4)</td>
<td>1₂ ба CH₄</td>
<td>2₂ ба AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1₂ ба CH₄</td>
<td>2₂ ба AdA</td>
</tr>
</tbody>
</table>

A.5 Дээрх мэдээлэл дэх (1) - (5) хүртэлгүй үр дүндээ эгдэлдээ дараах хүсээн-чөл 3pt тийн A ба B баганаас өндөр үү.
Капсулын дуртайн болон дургуй зүйлс

A.1 (13 pt)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (2 pt)</td>
<td></td>
</tr>
<tr>
<td>5 (3 pt)</td>
<td></td>
</tr>
<tr>
<td>6 (2 pt)</td>
<td></td>
</tr>
<tr>
<td>7 (2 pt)</td>
<td></td>
</tr>
<tr>
<td>8 (2 pt)</td>
<td></td>
</tr>
<tr>
<td>9 (2 pt)</td>
<td></td>
</tr>
</tbody>
</table>
A.2 (2 pt)

![Chemical Structure](image)

A.3 (2 pt)

A.4 (3 pt)

<table>
<thead>
<tr>
<th>Н³-ийн δ (ppm)</th>
<th>C⁶D₅-н тоо</th>
<th>C⁶D₅F-н тоо</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.60 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.71 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.82 ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5 (3 pt)

(1) :

(2) :

(3) :

(4) :

(5) :