Please return this cover sheet together with all the related question sheets.
International Chemistry Olympiad 2021 Japan
53rd IChO2021 Japan
25th July - 2nd August, 2021
https://www.icho2021.org

Chemistry! It's Cool!
General Instruction

• You are allowed to use only pen to write the answer.
• Your calculator must be non-programmable.
• This examination has 9 problems.
• You can solve the problems in any order.
• You will have 5 hours to solve all problems.
• You can begin working only after the START command is given.
• All results must be written in the appropriate answer boxes with pen on the answer sheets. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
• Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
• The invigilator will announce a 30-minute warning before the STOP command.
• You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your examination.
• The official English version of this examination is available on request only for clarification.
• You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

<table>
<thead>
<tr>
<th>Title</th>
<th>Total Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrogen at a Metal Surface</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2 Isotope Time Capsule</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3 Lambert–Beer Law?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4 The Redox Chemistry of Zinc</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5 Mysterious Silicon</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6 The Solid-State Chemistry of Transition Metals</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7 Playing with Non-benzenoid Aromaticity</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8 Dynamic Organic Molecules and Their Chirality</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9 Likes and Dislikes of Capsules</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

Total

100
Physical Constants and Equations

Constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>$c = 2.99792458 \times 10^8 \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Planck constant</td>
<td>$h = 6.62607015 \times 10^{-34} \text{ J s}$</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>$e = 1.602176634 \times 10^{-19} \text{ C}$</td>
</tr>
<tr>
<td>Electron mass</td>
<td>$m_e = 9.10938370 \times 10^{-31} \text{ kg}$</td>
</tr>
<tr>
<td>Electric constant (permittivity of vacuum)</td>
<td>$\varepsilon_0 = 8.85418781 \times 10^{-12} \text{ F m}^{-1}$</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td>$N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>$k_B = 1.380649 \times 10^{-23} \text{ J K}^{-1}$</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>$F = N_A \times e = 9.6485332123 \times 10^4 \text{ C mol}^{-1}$</td>
</tr>
<tr>
<td>Gas constant</td>
<td>$R = N_A \times k_B = 8.31446261815324 \text{ J K}^{-1} \text{ mol}^{-1}$</td>
</tr>
<tr>
<td>Unified atomic mass unit</td>
<td>$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$</td>
</tr>
<tr>
<td>Standard pressure</td>
<td>$p = 1 \text{ bar} = 10^5 \text{ Pa}$</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>$p_{\text{atm}} = 1.01325 \times 10^5 \text{ Pa}$</td>
</tr>
<tr>
<td>Zero degree Celsius</td>
<td>$0^\circ \text{ C} = 273.15 \text{ K}$</td>
</tr>
<tr>
<td>Ångstrom</td>
<td>$1 \text{ Å} = 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>Picometer</td>
<td>$1 \text{ pm} = 10^{-12} \text{ m}$</td>
</tr>
<tr>
<td>Electronvolt</td>
<td>$1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}$</td>
</tr>
<tr>
<td>Part-per-million</td>
<td>$1 \text{ ppm} = 10^{-6}$</td>
</tr>
<tr>
<td>Part-per-billion</td>
<td>$1 \text{ ppb} = 10^{-9}$</td>
</tr>
<tr>
<td>Part-per-trillion</td>
<td>$1 \text{ ppt} = 10^{-12}$</td>
</tr>
<tr>
<td>pi</td>
<td>$\pi = 3.141592653589793$</td>
</tr>
<tr>
<td>The base of the natural logarithm (Euler’s number)</td>
<td>$e = 2.718281828459045$</td>
</tr>
</tbody>
</table>
Equations

The ideal gas law

\[PV = nRT \]

where \(P \) is the pressure, \(V \) is the volume, \(n \) is the amount of substance, \(T \) is the absolute temperature of ideal gas.

Coulomb's law

\[F = k_e \frac{q_1 q_2}{r^2} \]

where \(F \) is the electrostatic force, \(k_e (\approx 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2}) \) is Coulomb's constant, \(q_1 \) and \(q_2 \) are the magnitudes of the charges, and \(r \) is the distance between the charges.

The first law of thermodynamics

\[\Delta U = q + w \]

where \(\Delta U \) is the change in the internal energy, \(q \) is the heat supplied, \(w \) is the work done.

Enthalpy \(H \)

\[H = U + PV \]

Entropy based on Boltzmann's principle \(S \)

\[S = k_B \ln W \]

where \(W \) is the number of microstates.

The change of entropy \(\Delta S \)

\[\Delta S = \frac{\Delta r G}{T} \]

where \(q_{rev} \) is the heat for the reversible process.

Gibbs free energy \(G \)

\[G = H - TS \]

\[\Delta r G^\circ = -RT \ln K = -zF E^\circ \]

where \(K \) is the equilibrium constant, \(z \) is the number of electrons, \(E^\circ \) is the standard electrode potential.

Reaction quotient \(Q \)

\[\Delta r G = \Delta r G^\circ + RT \ln Q \]

For a reaction

\[aA + bB \rightleftharpoons cC + dD \]

\[Q = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

where \(|A| \) is the concentration of \(A \).
<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Heat change Δq | $\Delta q = n c_m \Delta T$
, where c_m is the temperature-independent molar heat capacity. |
| Nernst equation for redox reaction | $E = E^\circ + \frac{RT}{zF} \ln \frac{C_{ox}}{C_{red}}$
, where C_{ox} is the concentration of oxidized substance, C_{red} is the concentration of reduced substance. |
| Arrhenius equation | $k = A \exp \left(-\frac{E_a}{RT} \right)$
, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy.
$\exp(x) = e^x$ |
| Lambert–Beer equation | $A = \varepsilon l c$
, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution. |
| Henderson–Hasselbalch equation | For an equilibrium
$HA \rightleftharpoons H^+ + A^-$
, where equilibrium constant is K_a,
$pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right)$ |
| Energy of a photon | $E = h \nu = \frac{h \lambda}{\lambda}$
, where ν is the frequency, λ is the wavelength of the light. |
| The sum of a geometric series | When $x \neq 1$,
$1 + x + x^2 + \cdots + x^n = \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}$ |
| Approximation equation that can be used to solve problems | When $x \ll 1$,
$\frac{1}{1-x} \simeq 1 + x$ |
Periodic Table

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Atomic Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Hydrogen</td>
<td>H</td>
<td>1</td>
<td>1.008</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Lithium</td>
<td>Li</td>
<td>3</td>
<td>6.941</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Beryllium</td>
<td>Be</td>
<td>4</td>
<td>9.012</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Boron</td>
<td>B</td>
<td>5</td>
<td>10.811</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Carbon</td>
<td>C</td>
<td>6</td>
<td>12.011</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Nitrogen</td>
<td>N</td>
<td>7</td>
<td>14.007</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Oxygen</td>
<td>O</td>
<td>8</td>
<td>15.999</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Fluorine</td>
<td>F</td>
<td>9</td>
<td>18.998</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>Neon</td>
<td>Ne</td>
<td>10</td>
<td>20.180</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Sodium</td>
<td>Na</td>
<td>11</td>
<td>22.989</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Magnesium</td>
<td>Mg</td>
<td>12</td>
<td>24.305</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>铝</td>
<td>Al</td>
<td>13</td>
<td>26.982</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Silicon</td>
<td>Si</td>
<td>14</td>
<td>28.086</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Phosphorus</td>
<td>P</td>
<td>15</td>
<td>30.974</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>Sulfur</td>
<td>S</td>
<td>16</td>
<td>32.066</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Chlorine</td>
<td>Cl</td>
<td>17</td>
<td>35.453</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Arsenic</td>
<td>As</td>
<td>18</td>
<td>74.967</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Potassium</td>
<td>K</td>
<td>19</td>
<td>39.948</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Calcium</td>
<td>Ca</td>
<td>20</td>
<td>40.078</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Scandium</td>
<td>Sc</td>
<td>21</td>
<td>44.955</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Titanium</td>
<td>Ti</td>
<td>22</td>
<td>47.880</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Vanadium</td>
<td>V</td>
<td>23</td>
<td>50.942</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Chromium</td>
<td>Cr</td>
<td>24</td>
<td>51.996</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Manganese</td>
<td>Mn</td>
<td>25</td>
<td>54.938</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Iron</td>
<td>Fe</td>
<td>26</td>
<td>55.845</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Copper</td>
<td>Cu</td>
<td>29</td>
<td>63.546</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Zinc</td>
<td>Zn</td>
<td>30</td>
<td>65.380</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Germanium</td>
<td>Ge</td>
<td>32</td>
<td>72.630</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Arsenic</td>
<td>As</td>
<td>33</td>
<td>74.921</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Selenium</td>
<td>Se</td>
<td>34</td>
<td>80.964</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Bromine</td>
<td>Br</td>
<td>35</td>
<td>80.924</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Krypton</td>
<td>Kr</td>
<td>36</td>
<td>83.800</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Rubidium</td>
<td>Rb</td>
<td>37</td>
<td>85.468</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Strontium</td>
<td>Sr</td>
<td>38</td>
<td>87.620</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Yttrium</td>
<td>Y</td>
<td>39</td>
<td>88.906</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Zirconium</td>
<td>Zr</td>
<td>40</td>
<td>91.220</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Niobium</td>
<td>Nb</td>
<td>41</td>
<td>92.906</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Molybdenum</td>
<td>Mo</td>
<td>42</td>
<td>95.940</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>Tungsten</td>
<td>W</td>
<td>72</td>
<td>180.947</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Lanthanum</td>
<td>La</td>
<td>57</td>
<td>138.905</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Cerium</td>
<td>Ce</td>
<td>58</td>
<td>140.116</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Praseodymium</td>
<td>Pr</td>
<td>59</td>
<td>140.908</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Neodymium</td>
<td>Nd</td>
<td>60</td>
<td>144.242</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Promethium</td>
<td>Pm</td>
<td>61</td>
<td>145.133</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Samarium</td>
<td>Sm</td>
<td>62</td>
<td>150.362</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Europium</td>
<td>Eu</td>
<td>63</td>
<td>151.964</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Gadolinium</td>
<td>Gd</td>
<td>64</td>
<td>157.25</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Terbium</td>
<td>Tb</td>
<td>65</td>
<td>158.925</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Dysprosium</td>
<td>Dy</td>
<td>66</td>
<td>162.500</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Holmium</td>
<td>Ho</td>
<td>67</td>
<td>164.930</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>Eternium</td>
<td>Er</td>
<td>68</td>
<td>167.259</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Thulium</td>
<td>Tm</td>
<td>69</td>
<td>168.934</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Ytterbium</td>
<td>Yb</td>
<td>70</td>
<td>173.045</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>Lutetium</td>
<td>Lu</td>
<td>71</td>
<td>174.967</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Actinium</td>
<td>Ac</td>
<td>89</td>
<td>227.038</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.035</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Uranium</td>
<td>U</td>
<td>92</td>
<td>238.029</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>Thorium</td>
<td>Th</td>
<td>90</td>
<td>232.038</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.035</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Np</td>
<td>Np</td>
<td>93</td>
<td>237</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>Pu</td>
<td>Pu</td>
<td>94</td>
<td>244</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Am</td>
<td>Am</td>
<td>95</td>
<td>243</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Curium</td>
<td>Cm</td>
<td>96</td>
<td>247</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Berkelium</td>
<td>Bk</td>
<td>97</td>
<td>259</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Cesium</td>
<td>Cs</td>
<td>55</td>
<td>132.905</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Rubidium</td>
<td>Rb</td>
<td>37</td>
<td>85.468</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>Krypton</td>
<td>Kr</td>
<td>36</td>
<td>83.800</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Francium</td>
<td>Fr</td>
<td>87</td>
<td>223</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Radium</td>
<td>Ra</td>
<td>88</td>
<td>226.025</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Actinium</td>
<td>Ac</td>
<td>89</td>
<td>227.038</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Thorium</td>
<td>Th</td>
<td>90</td>
<td>232.038</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.035</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Uranium</td>
<td>U</td>
<td>92</td>
<td>238.029</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>Neptunium</td>
<td>Np</td>
<td>93</td>
<td>237</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>Plutonium</td>
<td>Pu</td>
<td>94</td>
<td>244</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Lawrencium</td>
<td>Lr</td>
<td>103</td>
<td>262.061</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>Flerovium</td>
<td>Fl</td>
<td>104</td>
<td>269.065</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Livermorium</td>
<td>Lv</td>
<td>105</td>
<td>262.101</td>
</tr>
</tbody>
</table>

Key:
- **1**: Alkali metals
- **2**: Alkaline earth metals
- **3**: Lanthanides
- **4**: Actinides
- **5**: Transition metals
- **6**: D-block elements
- **7**: F-block elements
- **8**: Noble gases
- **9**: Post-transition metals
- **10**: Heavy metals
- **11**: Heavy elements
- **12**: More heavy elements

G0-6
- English (Official)
$\Delta \delta$ for one alkyl group-substitution: *ca.* +0.4 ppm
Олон Улсын химийн олимпиад 2021 Япон
53-р олимпиад IChO2021 Япон
7 сарын 25 - аас 8 сарын 2, 2021
https://www.icho2021.org
Ерөнхий удирдамж

- Хариуллыг зөвхөн үзгээр бичнэ.
- Програмчилдаггүй тооны машин ашиглах ёстой.
- Энэ тэмцээн 9 даалгавартай.
- Даалгаврыг ямар ч дарааллаар гүйцэтгэж болно.
- Даалгаврыг 5 цагийн хугацаанд гүйцэтгэнэ.
- ЭХЭЛ команд егнйг дараа даалгаврыг гүйцэтгэж эхэлнэ.
- Бодолт, ур дүнгээ хариултын хуудсан дээрх токирхой хариултын нуудэнд үзээр бичнэ. Нөөрөг цас шаардлагатай тохиолдолд асуултын хуудсаны ар талыг ашиглах болно. Хариултын хуудсан дэх хариултын хайлгааны гадна бичсэн бичгээлээг тооцохгүй.
- Шаардлагатай тохиолдолд хариултын нуудэнд харгалзах бодолтыг заавал хийх ба бодолт бичсэн тохиолдолд зөвлөгөөнд зөв хариулт бүрэн оноо тооцогдно.
- Хянагч багш ХУГАЦАА ДУУСАХ-аас 30 минутын емне сануулна.
- ЗОГС команд егмезж ажилд айлдах ёстой. Дуусгаагүй тохиолдолд гүйцэтгэлтгэй тооцохгүй байх ёстой болно.
- Зөвшөөрөл авахгүйгээр өрөөг орхихгүй. Хэрэв ямар нэг тусламж (тооны машин эвдэрүүлж, ариун цэврийн өрөө орох гэх мэт) шаардлагатай тохиолдолд гарыг хянагч өргөж хянагч багшыг ирэхээр өргөж болно.

АМЖИЛТ ХҮСЬЕ!

Даалгавар ба үнэнлэгээний мэдээлэл

<table>
<thead>
<tr>
<th>Гарчиг</th>
<th>Даалгаврын нэр</th>
<th>Нийт үнэлгээ</th>
<th>Гүйцэтгэлтгэй хувь</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Металлын гадаргуу дээрх устаргач</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Изотоп - цаг хугацааны капсул</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Ламберт-Бээрийн хуулыг</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Цайрын исэлдэн-ангижрах химийн</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Нуугдаг цахиур</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Шилжилтийн металлын нэгдлний хатуу телевизийн химийн</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Бензолны бус ароматик шинжэээр тоглоогов</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Динамик органик нэгдлэн тэдэгчидийн хираль чанар</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Капсулын дуртай болон дургүй зүйлс</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Нийт</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Физик тогтмол ба тэгшитгэл

Тогтмөл

<table>
<thead>
<tr>
<th>Горийн нэр</th>
<th>Зэргийн хэмжээ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вакуум дагуу гэрийн хурд</td>
<td>(c = 2.99792458 \times 10^8 \text{ м с}^{-1})</td>
</tr>
<tr>
<td>Планкны тогтмөл</td>
<td>(h = 6.62607015 \times 10^{-34} \text{ Ж с})</td>
</tr>
<tr>
<td>Эгэл цэнг</td>
<td>(e = 1.602176634 \times 10^{-19} \text{ C})</td>
</tr>
<tr>
<td>Электронны масс</td>
<td>(m_e = 9.10938370 \times 10^{-31} \text{ кг})</td>
</tr>
<tr>
<td>Цахилгаан тогтмөл (вакуумд намахлал)</td>
<td>(\varepsilon_0 = 8.85418781 \times 10^{-12} \text{ F м}^{-1})</td>
</tr>
<tr>
<td>Авогадроны тоо</td>
<td>(N_A = 6.02214076 \times 10^{23} \text{ моль}^{-1})</td>
</tr>
<tr>
<td>Больцманы тогтмөл</td>
<td>(k_B = 1.380649 \times 10^{-23} \text{ Ж К}^{-1})</td>
</tr>
<tr>
<td>Фарадейн тогтмөл</td>
<td>(F = N_A \times e = 9.64853321233100184 \times 10^4 \text{ C моль}^{-1})</td>
</tr>
<tr>
<td>Хийн нийтлэг тогтмөл</td>
<td>(R = N_A \times k_B = 8.31446261815324 \text{ Ж К}^{-1} \text{ моль}^{-1})</td>
</tr>
<tr>
<td></td>
<td>(= 8.2057366081 \times 10^{-2} \text{ л атм} \text{ К}^{-1} \text{ моль}^{-1})</td>
</tr>
<tr>
<td>Массын атом нэгж</td>
<td>(u = 1 \text{ Да} = 1.66053907 \times 10^{-27} \text{ кг})</td>
</tr>
<tr>
<td>Стандарт даралт</td>
<td>(p = 1 \text{ бар} = 10^5 \text{ Па})</td>
</tr>
<tr>
<td>Атмосферийн даралт</td>
<td>(p_{\text{атм}} = 1.01325 \times 10^5 \text{ Па})</td>
</tr>
<tr>
<td>Цельсийн тэг хэм</td>
<td>(0^\circ \text{ С = 273.15 K})</td>
</tr>
<tr>
<td>Ангстрем</td>
<td>(1 \text{ Å} = 10^{-10} \text{ м})</td>
</tr>
<tr>
<td>Пикометр</td>
<td>(1 \text{ пм} = 10^{-12} \text{ м})</td>
</tr>
<tr>
<td>Электрон вольт</td>
<td>(1 \text{ эВ} = 1.602176634 \times 10^{-19} \text{ Ж})</td>
</tr>
<tr>
<td>Саяны хэсэн</td>
<td>(1 \text{ ppm} = 10^{-6})</td>
</tr>
<tr>
<td>Тэрбумны хэсэн</td>
<td>(1 \text{ ppb} = 10^{-9})</td>
</tr>
<tr>
<td>Их найдын хэсэн</td>
<td>(1 \text{ ppt} = 10^{-12})</td>
</tr>
<tr>
<td>пи тоо</td>
<td>(\pi = 3.141592653589793)</td>
</tr>
<tr>
<td>Натурал логарифмийн суурь (E тоо)</td>
<td>(e = 2.718281828459045)</td>
</tr>
</tbody>
</table>
Тэгшитгэл

<table>
<thead>
<tr>
<th>Гэсэн хууль</th>
<th>$PV = nRT$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P - даралт, V - элэхүүн, n - бодисын тоо хэмжээ, T - идеал хийн абсолют температур.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Кулоны хууль</th>
<th>$F = k_e \frac{q_1 q_2}{r^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F - электростатик хуч, $k_e(\approx 9.0 \times 10^9 \text{ N m}^{-2} \text{ C}^{-2})$ - Кулоны тогтмол, q_1 ба q_2 цэнгийн хэмжигдэхүүн, r - цэнгүүдийн хоорондох зай.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Термодинамикийн нэгдүгээр хууль</th>
<th>$\Delta U = q + w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔU - дотоод энергийн өөрчлөл, q дулаан тоо хэмжээ, w - ажил.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Энталпи H</th>
<th>$H = U + PV$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Энтропи (Больцманы зарчимд ундэслэсэн) S</th>
<th>$S = k_B \ln W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W - микро телевийн тоо</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Энтропийн өөрчлөл ΔS</th>
<th>$\frac{\Delta S}{T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔS - микронд хийлээдэх процессын дулаан.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Гиббсийн чөлөөт энергий G</th>
<th>$G = H - TS$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_r G^\circ = -RT \ln K = -zF E^\circ$</td>
<td></td>
</tr>
<tr>
<td>K - тэнцэрийн тогтмол, z - электрон тоо, E° -стандарт электродын потенциал.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Урвалын харьцаа Q</th>
<th>$\Delta_r G = \Delta_r G^\circ + RT \ln Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дараах урвалын хувь $aA + bB \rightleftharpoons cC + dD$</td>
<td></td>
</tr>
<tr>
<td>$Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$</td>
<td></td>
</tr>
<tr>
<td>$[A]$ - A-гийн концентрац</td>
<td></td>
</tr>
</tbody>
</table>
Дулааны вөрчлөл Δq
$$\Delta q = n c_m \Delta T$$
Δq - температураас хамарагчийг молийн дулаан багтаамж.

Нернстийн тэгшитгэл
$$E = E^0 + \frac{RT}{zF} \ln \frac{C_{ox}}{C_{red}}$$
C_{ox} - исэлдсэн бодисын концентрац, C_{red} ангижирсан бодисын концентрац.

Аррениусын тэгшитгэл
$$k = A \exp \left(- \frac{E_a}{RT} \right)$$
k - хүрдэн тогтмол, A - фактор, E_a идэвхжлийн энергий.
$$\exp(x) = e^x$$

Ламберт-Бээрийн хууль
$$A = \varepsilon l c$$
A - шингээлт, ε молийн шинэлэлтийн коэффициент, l оптик замын урт, c - уусмалын концентрац.

Хэндерсон - Хасселбахын тэгшитгэл
Дараах тэнцээрт:
$$HA \rightleftharpoons H^+ + A^-$$
K_a - тэнцээртэйн тогтмол
$$\text{pH} = pK_a + \log \left(\frac{[A^-]}{[HA]} \right)$$

Фотоны энергии
$$E = h \nu = h \frac{\nu}{\lambda}$$
ν - давтамж, λ - өгрийн долгионы урт.

Геометр цувааны нийлбэр
$$x \neq 1 \text{ уед}$$
$$1 + x + x^2 + \ldots + x^n = \sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x}$$

Даалгавар гүйцэтгэхэд ашиглаж болох ойролцоолол
$$x \ll 1 \text{ уед}$$
$$\frac{1}{1 - x} \approx 1 + x$$
1H NMR химийн шилжилт

$\Delta \delta$ - нэг алкил бүлэг халагдах шилжилт: +0.4 ppm орчим
Please return this cover sheet together with all the related question sheets.
Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, \(\text{H}_2(g) \rightarrow 2\text{H}(\text{ad}) \), where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (\(\text{H}_2 \)) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of \(\text{H}_2 \) is represented by two variables: the interatomic distance, \(d \), and the height relative to the surface metal atom, \(z \). It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of kJ per mole of \(\text{H}_2 \). The solid line spacing is 20 kJ mol\(^{-1}\), the dashed line spacing is 100 kJ mol\(^{-1}\), and the spacing between solid and dashed lines is 80 kJ mol\(^{-1}\). The zero-point vibration energy is ignored.
Fig. 1 Definition of variables. Drawing is not in scale.

Fig. 2
A.1 For each of the following items (i)–(iii), select the closest value from A–G.
(i) The interatomic distance for a gaseous H_2 molecule
(ii) The interatomic distance between metal atoms (d_M in Fig. 1)
(iii) The distance of adsorbed H atoms from the surface (h_{ad} in Fig. 1)

<table>
<thead>
<tr>
<th></th>
<th>A. 0.03 nm</th>
<th>B. 0.07 nm</th>
<th>C. 0.11 nm</th>
<th>D. 0.15 nm</th>
<th>E. 0.19 nm</th>
<th>F. 0.23 nm</th>
<th>G. 0.27 nm</th>
</tr>
</thead>
</table>

A.2 For each of the following items (i)–(ii), select the closest value from A–H.
(i) the energy required for the dissociation of gaseous H_2 to gaseous H
$[H_2(g) \rightarrow 2H(g)]$
(ii) the energy released during the adsorption of a gaseous H_2 $[H_2(g) \rightarrow 2H(ad)]$

| | A. 20 kJ mol$^{-1}$ | B. 40 kJ mol$^{-1}$ | C. 60 kJ mol$^{-1}$ | D. 100 kJ mol$^{-1}$ | E. 150 kJ mol$^{-1}$ | F. 200 kJ mol$^{-1}$ | G. 300 kJ mol$^{-1}$ | H. 400 kJ mol$^{-1}$ |
The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). \(H(\text{ab}) \) represents a hydrogen atom absorbed in the bulk.

\[
\begin{align*}
H_2(g) & \xrightleftharpoons[k_2]{k_1} 2H(\text{ad}) \quad (1a) \\
H(\text{ad}) & \rightarrow H(\text{ab}) \quad (1b)
\end{align*}
\]

The reaction rates per surface site for adsorption, desorption, and absorption are \(r_1 [s^{-1}] \), \(r_2 [s^{-1}] \) and \(r_3 [s^{-1}] \), respectively. They are expressed as:

\[
\begin{align*}
 r_1 &= k_1 P_{H_2} (1 - \theta)^2 \quad (2) \\
 r_2 &= k_2 \theta^2 \quad (3) \\
 r_3 &= k_3 \theta \quad (4)
\end{align*}
\]

where \(k_1 [s^{-1} \text{Pa}^{-1}] \), \(k_2 [s^{-1}] \) and \(k_3 [s^{-1}] \) are the reaction rate constants and \(P_{H_2} \) is the pressure of \(H_2 \). Among the sites available on the surface, \(\theta (0 \leq \theta \leq 1) \) is the fraction occupied by \(H \) atoms. It is assumed that adsorption and desorption are fast compared to absorption \((r_1, r_2 \gg r_3) \) and that \(\theta \) remains constant.

\[
\begin{align*}
\text{B.1} \quad r_3 \text{ can be expressed as:} & \quad \text{5pt} \\
 r_3 &= \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2} C}}} \quad (5)
\end{align*}
\]

Express \(C \) using \(k_1 \) and \(k_2 \).
A metal sample with a surface area of $S = 1.0 \times 10^{-3} \text{ m}^2$ was placed in a container ($1 \text{ L} = 1.0 \times 10^{-3} \text{ m}^3$) with H_2 ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. The surface temperature was kept at $T = 400 \text{ K}$. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$. Assume that H_2 is an ideal gas and that the volume of the metal sample is negligible.

B.2 Calculate the amount of H atoms in moles absorbed per unit area of the surface per unit time, $A \text{ [mol s}^{-1} \text{ m}^{-2}]$.

**B.3 At } T = 400 \text{ K, } C \text{ equals } 1.0 \times 10^2 \text{ Pa}^{-1}. \text{ Calculate the value of } k_3 \text{ at 400 K. If you did not obtain the answer to B.2, use } A = 3.6 \times 10^{-7} \text{ mol s}^{-1} \text{ m}^{-2}.

**B.4 At a different } T, \ C = 2.5 \times 10^3 \text{ Pa}^{-1} \text{ and } k_3 = 4.8 \times 10^{-2} \text{ s}^{-1} \text{ are given. For } r_3 \text{ as a function of } P_{\text{H}_2} \text{ at this temperature, select the correct plot from (a)-(h).}

![Graphs showing the relationship between P_{H_2} and r_3 at different temperatures.](image-url)
Металлын гадаргуу дээрх устөрөгч

<table>
<thead>
<tr>
<th>Нийт оноо 11 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулаа</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэлгээ</td>
</tr>
</tbody>
</table>

Устөрөгч нь ирээдүйд шатах ашигт малтмалаас үл хамааралтай болох гол энергийн эх үүсвэр байх төлөвтэй байна. Энд бид устөрөгч тээвэрлэх, хадгалах технологитой холбоотой металд устөрөгч хадгалах үйл явцыг авч үзэх болно.

А хэсэг

Устөрөгч металлын гадаргуугаар дамжин металлын мөхлөг руу абсорбцилдогдож түл эхлээд металлын гадаргуу дээр устөрөгчийн адсорбцийн H₂(г) → 2H(ad) процессыг авч үзье. Энд, хийн болон адсорбцилдсэн төлөвт байгаа устөрөгчийг харгалзан (g) ба (ad) гэж тэмдэглэв.

Устөрөгчийн молекул (H₂) металлын гадаргуу (M)-д хурээд диссоциацийд өрж H атом хэлбэрээр адсорбцилдогдоно (Зураг 1). Энд, устөрөгчийн молекул H₂-ийн потенциал энергийг хөрөг хувьсагчар илээрхийлэв: нэгдүгээр, атом хоорондын зай - d, хоёрдугаар, гадаргуугийн металлын атомтай харьцулсан харьцангуй эндер - z. Хөр устөрөгчийн атом N-ийг дайрсан тэнхэлг нь гадаргуутай параллель байх бегоо хүндийн хучний төв нь Зураг 1-д узуулсан босоо тасархай шугамын дагуу ямагт байрладаг гэж үздээ.

Зураг 2-т гадаргуу дээр болох диссоциацийн потенциал энергийн контур диаграммыг харуулж. Потенциал энергийн диаграм дээр тоон холбогдол нь 1 моль H₂ тутамд ноогдох кЖ гэсэн нэгжээр илээрхийлэгдээн. Уртлжилсан шугам хоорондын зай 20 кЖ моль⁻¹, тасархай шугам хоорондын зай 100 кЖ моль⁻¹, уртлжилсан ба тасархай шугам хоорондох зай 80 кЖ моль⁻¹. Тэг цэгийн хэлбэрэл-лийн энергийг үл тооцсон.
Зураг 1. Хувьсах хэмжигдэхүүний тодорхойлолт. Зураг нь масштабуу болно.

Зураг 2.
A.1 Дараах (i)–(iii) тус бүрийн хувьд хамгийн ойролцоо утгыг A–G-ээс сонгоно уу.
(i) Хий байдалтай H_2 молекул дахь атом хоорондын зай
(ii) Металлын атомуудын хоорондын зай (Зураг 1 дээрх d_M)
(iii) Адсорбцилогдсон H атомуудын гадаргуу гаас алслагдсан зай (Зураг 1 дээрх h_{ad})

A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm
E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2 Дараах (i)–(ii) тус бүрийн хувьд хамгийн ойролцоо утгыг A–H-ээс сонгоно уу. 4pt
(i) H_2 хийг H хий болгон задлахад шаардагдах энергия

$[H_2(g) \rightarrow 2H(g)]$

(ii) H_2 хийг адсорбцилоход ялгарах энергия

$[H_2(g) \rightarrow 2H(ad)]$

A. 20 кЖ моль$^{-1}$ B. 40 кЖ моль$^{-1}$ C. 60 кЖ моль$^{-1}$ D. 100 кЖ моль$^{-1}$
E. 150 кЖ моль$^{-1}$ F. 200 кЖ моль$^{-1}$ G. 300 кЖ моль$^{-1}$ H. 400 кЖ моль$^{-1}$
В хэсэг

Адсорбциллогдсон устэрөгчийн атом нь цаашид хоороондоо дахин нэгдэж хийн фаз руу десорбцилогдно (1а тэгшитгэл), мөн металлын мөхлөг руу абсорбцилогдоно (1б тэгшитгэл). H(ab) нь-металлын мөхлөг руу абсорбцилогдсон устэрөгчийн атомыг илэрхийлнэ.

\[
\begin{align*}
 \text{H}_2(\text{g}) & \xrightleftharpoons[k_2]{k_1} 2\text{H(ad)} \\
 \text{H(ad)} & \rightarrow \text{H(ab)}
\end{align*}
\]

(1a)

(1b)

Гадаргуугийн нэгж цэгт болох адсорб, десорб, абсорбицийн хурд нь харгалзан \(r_1 \), \(r_2 \), \(r_3 \) байна. Тэдгээрийг дараах байдлаар илэрхийлнэ:

\[
\begin{align*}
 r_1 &= k_1 P_{\text{H}_2} (1 - \theta)^2 \\
 r_2 &= k_2 \theta^2 \\
 r_3 &= k_3 \theta
\end{align*}
\]

(2)

(3)

(4)

энд \(k_1 [\text{с}^{-1} \text{Па}^{-1}], k_2 [\text{с}^{-1}], k_3 [\text{с}^{-1}] \) нь урвалын хүрднэ тогтмол, харин \(P_{\text{H}_2} \) нь \text{H}_2-ийн даралт юм. Гадаргуу дээр байгаа боломжит цэгүүд \(0 \leq \theta \leq 1 \) нь H-ийн атомд зэлэгдээн хасгийн доль юм. Адсорбц ба десорбц нь абсорбцийн харьцуулахад хүрдэн \(r_1 \gg r_2 > r_3 \) бегеэд \(\theta \) нь тогтмол гэж узэж болно.

B.1

\[
\begin{align*}
 r_3 &= \frac{k_3}{1 + \sqrt{\frac{1}{P_{\text{H}_2} C}}}
\end{align*}
\]

(5)

\(k_1 \) болон \(k_2 \)-ийг ашиглан \(C \)-г илэрхийлнэ \(\text{yy} \).
$S = 1.0 \times 10^{-3}$ м² гадаргуу гэжийн талбай бүхий металлын дээжийг H_2 ($P_{H_2} = 1.0 \times 10^2$ Па) бүхий сав (1л = 1.0×10^{-3} м³)-нд байрлалт байсан. Гадаргуу дээр устөрөгчийн атомын адсорбцилдсэн цэгийн нягтрал $N = 1.3 \times 10^{18}$ м⁻² байв. Гадаргуу гэжийн температур $T = 400$ К байғалсан. Урвал (1) явагдахад устөрөгчийн даралт P_{H_2} тогтмол $V = 4.0 \times 10^{-4}$ Па с⁻¹ хурдтайгаар буурав.

Устөрөгч H_2-ийг идеаль хий, металлын ээлхүүний тооцоо угтаагаар гэж тус тус зүйл.

В.2 Нэгж хугацаанд гадаргуу гэжийн нэгж талбайд абсорбцилдсэн H атомын моль нь A [моль с⁻¹ м⁻²]-г тооцоо уу.

В.3 $T = 400$ К уед C нь 1.0×10^2 Па⁻¹-тэй тэнцээн байна. k_3-ийг 400 К-д 3pt тооцоо уу. Хэрэв В.2-т хариулж чадаагүй бол $A = 3.6 \times 10^{-7}$ моль с⁻¹ м⁻²-ийг энэ тооцоод ашиглан уу.

В.4 Өөр нэгэн T-ийн уед $C = 2.5 \times 10^3$ Па⁻¹ болон $k_3 = 4.8 \times 10^{-2}$ гэж огцд. Энэ температур P_{H_2}-ээс хамаарсан функц болох r_3-ийн хувьд тогтмол графикийг (a)-(h)-ээс сонгоно уу.
Металлын гадаргуу дээрх устёрөч

А хэсэг

<table>
<thead>
<tr>
<th>A.1 (6 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
</tr>
<tr>
<td>(ii)</td>
</tr>
<tr>
<td>(iii)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A.2 (4 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
</tr>
<tr>
<td>(ii)</td>
</tr>
</tbody>
</table>
В хэсэг

В.1 (5 pt)

\[C = \]
B.2 (3 pt)

\[A = \text{моль} \, \text{с}^{-1} \, \text{м}^{-2} \]

B.3 (3 pt)

\[k_3 = \text{с}^{-1} \]

B.4 (3 pt)

ICHo
Problem 2
Cover sheet

Please return this cover sheet together with all the related question sheets.
Molecular entities that differ only in isotopic composition, such as CH₄ and CH₃D, are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

\[^{12}\text{C}^{16}\text{O}_2 + ^{12}\text{C}^{18}\text{O}_2 \rightleftharpoons 2^{12}\text{C}^{16}\text{O}^{18}\text{O} \]

The entropy, \(S \), increases with increasing the number of possible microscopic states of a system, \(W \):

\[S = k_B \ln W \]

\(W = 1 \) for \(^{12}\text{C}^{16}\text{O}_2\) and \(^{12}\text{C}^{18}\text{O}_2\). In contrast, \(W = 2 \) for a \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) molecules, \(W = 2^2 = 4 \).
A.1 The enthalpy change, ΔH, of eq. 3 is positive regardless of the temperature.

\[
\text{H}_2 + \text{D}\text{I} \rightleftharpoons \text{HD} + \text{HI} \quad (3)
\]

Calculate the equilibrium constants, K, for eq. 3 at very low (think of $T \to 0$) and very high (think of $T \to +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

\[
2\text{HD} \rightleftharpoons \text{H}_2 + \text{D}_2 \quad K = \frac{[\text{H}_2][\text{D}_2]}{[\text{HD}]^2} \quad (4)
\]

At $T = 0$ K, the vibrational energy of a diatomic molecule whose vibration frequency is ν [s$^{-1}$] is expressed as:

\[
E = \frac{1}{2} h \nu \quad (5)
\]

\[
\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \quad (6)
\]

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2, according to:

\[
\mu = \frac{m_1 m_2}{m_1 + m_2} \quad (7)
\]

A.2 The vibration of H$_2$ is at 4161.0 cm$^{-1}$ when reported as a wavenumber. **Calculate** the ΔH of the following equation at $T = 0$ K in units of J mol$^{-1}$.

\[
2\text{HD} \rightarrow \text{H}_2 + \text{D}_2 \quad (8)
\]

Assume that:
- only the vibrational energy contributes to the ΔH.
- the k values for H$_2$, HD, and D$_2$ are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.
The molar ratio of H_2, HD, and D_2 depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D_2.

$$\Delta_{D_2} = \frac{R_{D_2}}{R_{D_2}^*} - 1$$ \hspace{1cm} (9)

Here, R_{D_2} refers to $\frac{[D_2]}{[H_2]}$ in the sample and $R_{D_2}^*$ to $\frac{[D_2]}{[H_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 Calculate Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.
In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO$_2$ molecules with molecular weights of 44 and 47, which are described as CO$_2^{[44]}$ and CO$_2^{[47]}$ below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}^{\text{ref}}}{R_{47}^{\ast}} - 1$$

(10)

R_{47}^{\ast} refers to $[\text{CO}_2^{[47]}]$ in the sample and R_{47}^{ref} to $[\text{CO}_2^{[47]}]$ at $T \to +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

<table>
<thead>
<tr>
<th></th>
<th>^{12}C</th>
<th>^{13}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>^{16}O</th>
<th>^{17}O</th>
<th>^{18}O</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4}$$

(11)

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5}. **Estimate** the temperature using this R_{47}. This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of CO$_2^{[47]}$ for the calculation.
Изотоп - Цаг хугацааны капсул

<table>
<thead>
<tr>
<th>Нийт онооны 11 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэнгээ</td>
</tr>
</tbody>
</table>

Молекулны бутэц нь зөвхөн изотопын найрлагаар ёслолын ялгаатай CH₄, CH₃D зэрэг бодисуудыг изотополог гэж нэрлэдэг. Изотопологийг ижил химийн шинж чанартай гэж үздэг болович унэндээ ялмугуй ялгаатай.

Энэ даалгаварт харуулсан бух бодисууд хийн төлөөт байна гэж үзнэ.

Дараах тэнцвэрийг авч үзье:

\[^{12}\text{C}^{16}\text{O}_2 + ^{12}\text{C}^{18}\text{O}_2 \rightarrow 2^{12}\text{C}^{16}\text{O}^{18}\text{O} \]

\[K = \frac{[^{12}\text{C}^{16}\text{O}^{18}\text{O}]^2}{[^{12}\text{C}^{16}\text{O}_2][^{12}\text{C}^{18}\text{O}_2]} \]

(1)

Системийн боловкит микро төлөөн байдлын тоо W ихээхэд энтропи, S ихээдэг:

\[S = k_B \ln W \]

(2)

\(^{12}\text{C}^{16}\text{O}_2\) ба \(^{12}\text{C}^{18}\text{O}_2\) хувьд \(W = 1\) байна. Эсрэгээрээ, \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) молекулны хувьд \(W = 2\) байдаг нь энэ молекул дахь хүчилтерүү дэлхийн атомууд ялгаатай байдгас болно. Тэгшитгээл 1-д харуулсан нь тэнцвэрийн баруун талд хоёр молекул \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) байгаа учир, \(W = 2^2 = 4\) болно.
A.1

Тэгшитгэл 3-ын энтальпийн вэрчлэлт, ΔH температураас үл хамааран энерги байна.

$$H_2 + D + \Delta H = HD + HI$$ \(3\)

Тэгшитгэл 3-ын хувьд маш бага ($T \to 0$) ба маш эндер ($T \to +\infty$) температуруу, K-г тооцоолно уу. Эдгээр температурт урвал вэрчлэгдэгийг хэвээр байх ба ΔH нь эндер температуруу тогтмол утгад шилждэг гэж үзнэ.

Дараах процессын ΔH-ийг молекулны хэрэлэнд тайлбарлаж болдог.

$$2HD \rightleftharpoons H_2 + D_2 \quad K = \frac{[H_2][D_2]}{[HD]^2}$$ \(4\)

Т = 0 K үед хэрэлэнд диаграмт молекулны хэрэлэнэн энэгийн дараах байдлаар илэрхийлэн:

$$E = \frac{1}{2} h \nu$$ \(5\)

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$ \(6\)

Энд k нь хучний тогтмол, μ нь ангизсэн масс бөгөөд ангизсэн массыг диатомт молекул дахь хоёр атомны масс m_1 ба m_2-оо дараах тэгшитгэлийн дагуу тодорхойлно:

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$ \(7\)

A.2

H_2-ийн хэрэлэнэн долгионы тоогоор илэрхийлэхэд 4161.0 см$^{-1}$ байжээ.

Тэгшитгэл 4-ийн ΔH-ийг $T = 0$ K үед Ж моль$^{-1}$ нэгжээр тооцоолоо уу.

$$2HD \rightarrow H_2 + D_2$$ \(8\)

- Зөөвөөр хэрэлэнэн энэгий ΔH-д вэрчлэлт оруулдаг
- H_2, HD, D$_2$-ийн k утга ижил
- Н-ийн масс 1 Da, D-ийн масс 2 Da

байна гэж үзнэ.
Тэнцвэр тогтсон систем H₂, HD, D₂-ийн молиийн харьцаа температураас хамаарна. Энд ΔD₂ нь D₂-ийн молиийн харьцааны өөрчлөлтөө тодорхойлдогдоно.

\[\Delta_{D_2} = \frac{R_{D_2}}{R'_{D_2}} - 1 \]

(9)

Энд: \(R_{D_2} \) нь дээжин дэх \(\frac{[D_2]}{[H_2]} \), \(R'_{D_2} \) нь \(T \to +\infty \) үеийн \(\frac{[D_2]}{[H_2]} \)-г илэрхийлнэ. Изотопын тархалт \(T \to +\infty \) үед санамсаргуй болж байгааг анхаарна уу.

А.3 Тэгшитгэл 4-ийн тэнцэрийн тогтмол \(k' \) нь 0.300 байх температур тэнцвэр 10pt тогтсон уед байгаль дахь D тархалтаар \(\Delta_{D_2} \)-г тооцоолоо уу. D ба Н-ийн байгаль дахь тархалтын молиийн дол
\[1.5576 \times 10^{-4} \text{ ба } 1 - 1.5576 \times 10^{-4} \text{ байна} \] гэж унээ.

\[\Delta_{47} = \frac{R_{47}}{R_{44}} - 1 \] (10)

\[R_{47} \] нь дээжин дэх \[\frac{[CO_2]_{47}}{[CO_2]_{44}} \] ба \[R_{44} \] нь \(T \to +\infty \) үеийн \[\frac{[CO_2]_{47}}{[CO_2]_{44}} \]-г илэрхийлэн. Байгаль дахь нүүрстөрөгч ба хүчилтөрөгчийн изотопуудын тархалтын молийн долийг доор харуулав. Энд харуулаагүй изотопуудыг тооцохгүй орхино.

<table>
<thead>
<tr>
<th></th>
<th>¹²C</th>
<th>¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td>байгаль дахь тархалт</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>¹⁶O</th>
<th>¹⁷O</th>
<th>¹⁸O</th>
</tr>
</thead>
<tbody>
<tr>
<td>байгаль дахь тархалт</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

Δ₄₇-ийн температураас хамаарах хамаарлыг дараах байдлаар тодорхойлоно, энд \(T \)-ийг Кельвиний нэгжээр өгсөн:

\[\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \] (11)

А.4 Антарктидын далайн ёроолоос олдсон чулуужсан планктоны \(R_{47} \) нь 9pt 4.50865 × 10⁻³ байв. Энэ \(R_{47} \)-г ашиглан температурыг тооцоллоо уу. Энэ температурыг планктон амьдарч байсан уейн агаарын температур гэж үздэг. Тооцоолд зөвхөн хамгийн түгээмэл изотоп CO2[47] авна.
Изотоп - Цаг хугацааны капсул

A.1 (8 pt)

\[T \to 0 : K = \quad , \quad T \to +\infty : K = \]
ΔΗ = \text{Ж моль}^{-1}
A.3 (10 pt)

$\Delta D_2 =$

\[T = K \]
IChO
Problem 3
Cover sheet

Please return this cover sheet together with all the related question sheets.
Lambert–Beer Law?

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution X was prepared using HA and NaA. The concentrations $[A^-]$, $[HA]$, and $[H^+]$ in solution X are 1.00×10^{-2} mol L$^{-1}$, 1.00×10^{-3} mol L$^{-1}$, and 1.00×10^{-4} mol L$^{-1}$, respectively, which are correlated via the following acid-base equilibrium:

$$HA \rightleftharpoons A^- + H^+ \quad K = \frac{[A^-][H^+]}{[HA]}$$

The optical path length is l in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of X was A_1 at a wavelength of λ_1. Then, solution X was diluted to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1. **Determine** the ratio $\varepsilon_{HA}/\varepsilon_{A^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A$, respectively, at λ_1. 10pt
Part B

Let us consider the following equilibrium in the gas phase.

\[
\text{D} \rightleftharpoons 2\text{M}
\] \hspace{1cm} (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of \(S\) (see the figure below) at a pressure \(P\), and equilibrium is established while the total pressure is kept at \(P\). The absorbance of the gas is \(A = \varepsilon(n/V)l\), where \(\varepsilon\), \(n\), \(V\), and \(l\) are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

<table>
<thead>
<tr>
<th></th>
<th>Initial state</th>
<th>After equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>Partial pressure</td>
<td>(P)</td>
<td>0</td>
</tr>
<tr>
<td>Amount in moles</td>
<td>(n_0)</td>
<td>0</td>
</tr>
<tr>
<td>Volume</td>
<td>(V_0)</td>
<td>(V)</td>
</tr>
</tbody>
</table>

B.1 The absorbance of the gas at \(\lambda_{B1}\) measured from direction \(x\) \((l = l_x)\) was \(A_{B1}\) both at the initial state and after the equilibrium. Determine the ratio \(\varepsilon_D/\varepsilon_M\) at \(\lambda_{B1}\), where \(\varepsilon_D\) and \(\varepsilon_M\) represent the absorption coefficients of D and of M, respectively.

B.2 The absorbance of the gas at \(\lambda_{B2}\) measured from direction \(y\) was \(A_{B2}\) both at the initial state \((l = l_{y0})\) and after the equilibrium \((l = l_y)\). Determine the ratio \(\varepsilon_D/\varepsilon_M\) at \(\lambda_{B2}\).
Ламберт-Бээрийн хууль?

<table>
<thead>
<tr>
<th>Нийт онооны 8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
</tbody>
</table>

Энэхүү бодлогод уусгач болон савны шингээлтэйг тооцохгүй. Бүх уусмал болон хийн температур нь тогтмол 25 ºС байсан.

A хэсэг

НА болон NaA-г ашиглаан X-ийн усан уусмалыг бэлтгэсэн. X-ийн уусмал дахь \([A^-], [HA], [H^+]\)-ийн концентрац тус бүр 1.00 × 10⁻² моль л⁻¹, 1.00 × 10⁻³ моль л⁻¹, 1.00 × 10⁻⁴ моль л⁻¹ ба дараа хүчил-суурийн тэнцээрт хамаарна:

\[
HA \rightleftharpoons A^- + H^+ \\
K = \frac{[A^-][H^+]}{[HA]} \tag{1}
\]

А хэсэт оптик замын урт \(l\) болно. Шингээрлэлтийн дараах нягтын вэрчлэлтэйг тооцохгүй. Тэгшитгэл 1-эс эр химийн урвал явагдахгүй гэж үзнэ үү.

A.1

\(\lambda_1\) долгионы уртад X-ийн шингээлт \(\lambda_1\). X-ийн уусмалыг \(pH = 2.500\)-тай давсны хуучин уусмаалар анхны ээлэхүүнийг 2 дахин ил болтол шингээрлэлсэн. Шингээрлэлтийн дараах шингээлт \(\lambda_1\)-г \(\lambda_1\)-ээс хэвээр байв. \(\lambda_1\)-т NA болон \(A^-\)-ийн шингээлтийн коэффициентууд харгалзан \(\varepsilon_{HA}\) ба \(\varepsilon_{A^-}\) бол \(\varepsilon_{HA}/\varepsilon_{A^-}\)-ийн харьцааг тодорхойлно уу.
В хэсэг

Хийн фаз дахь дараах тэнцвэрийг авч үзье.

\[D \rightleftharpoons 2M \] \hspace{1cm} (2)

\(S \) хендлэн огтлолтой хеделгэент хана бухий тэг ш энцгүй тунгалаг сав (доорх зүрийг харна уу)-ыг \(P \) даралттай хавар \(D \) хийгээр дүүргэсэн ба тэнцвэр тогтсон дараа нийт даралт \(P \) өөрчлөгдөөгүй. Хийн шингээлт нь \(A = \varepsilon(n/V)l \) бөгөөд \(\varepsilon, n, V \) ба \(l \) нь харгалзан шингээлтийн коэффициент, хийн молийн тоо, хийн эзэлхүүн, оптик замын урт юм. Хийн холимог дахь бух хийг идеаль хий гэж үзнэ.

Тооцоонд дараах тэмдэглэгээ хэрэглээд хэрэглээд хэрэглэж буй хийн шингээлт \(\lambda_{B1} \)ч \(x \) (\(l = l_x \)) чиглэлдийн дагуу хэмжихэд анхны телев болон тэнцвэрийн дараах хөёулал \(A_{B1} \) байв. \(D \) болон \(M \)-ийн шингээлтийн коэффициент харгалзан \(\varepsilon_D \) ба \(\varepsilon_M \) бөгөөд \(\lambda_{B1} \)дэх \(\varepsilon_D/\varepsilon_M \) -ийн харьцааг тодорхойлоо уу.

\[\lambda_{B1} \]-т хийн шингээлтийг \(x \) (\(l = l_x \)) чиглэлүүдийн дагуу эмххийд анхны телев болон тэнцвэрийн дараах хөёулал \(A_{B1} \) байв. \(D \) болон \(M \)-ийн шингээлтийн коэффициент харгалзан \(\varepsilon_D \) ба \(\varepsilon_M \) бөгөөд \(\lambda_{B1} \)дэх \(\varepsilon_D/\varepsilon_M \) -ийн харьцааг тодорхойлоо уу.

\[\lambda_{B2} \]дэх хийн шингээлтийг \(y \) чиглэлдийн дагуу эмххийд анхны телев (\(l = l_y \)) болон тэнцвэрийн дараах (\(l = l_y \)) хөёулал \(A_{B2} \) байв. \(\lambda_{B2} \)дэх \(\varepsilon_D/\varepsilon_M \) -ийн харьцааг тодорхойлоо уу.
Ламберт-Бээрийн хууль?

А хэсэг

А.1 (10 рт)

(Ургэлжлэл дараагийн хуудсанд)
A.1 (cont.)

\[
\frac{\varepsilon_{HA}}{\varepsilon_{A^{-}}} = \quad \underline{\text{Blank Space}}
\]
\[\frac{\varepsilon_D}{\varepsilon_M} = \]
B.2 (6 pt)

\[\frac{\varepsilon_D}{\varepsilon_M} = \]
Please return this cover sheet together with all the related question sheets.
The Redox Chemistry of Zinc

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $\text{Zn(OH)}_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \quad K_{sp} = 1.74 \times 10^{-17} \tag{1}
\]

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6} \tag{2}
\]

\[
\text{Zn(OH)}_2(s) + 2\text{OH}^-(aq) \rightleftharpoons \text{Zn(OH)}_4^{2-}(aq) \quad K_2 = 6.47 \times 10^{-2} \tag{3}
\]

\[
\text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq) \quad K_w = 1.00 \times 10^{-14} \tag{4}
\]
The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [\text{Zn}^{2+}(\text{aq})] + [\text{Zn(OH)}_2(\text{aq})] + [\text{Zn(OH)}_4^{2-}(\text{aq})]$$ \hspace{1cm} (5)

A.1 When the equilibria in eq. 1–4 are established, **calculate** the pH range in which $[\text{Zn(OH)}_2(\text{aq})]$ is the greatest among $[\text{Zn}^{2+}(\text{aq})]$, $[\text{Zn(OH)}_2(\text{aq})]$ and $[\text{Zn(OH)}_4^{2-}(\text{aq})]$. **6pt**

A.2 A saturated aqueous solution of Zn(OH)$_2$(s) with pH = 7.00 was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. **Calculate** the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes. **5pt**

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$\text{Zn(OH)}_2(\text{s}) \rightarrow \text{ZnO}(\text{s}) + \text{H}_2\text{O}(\text{l})$$ \hspace{1cm} (6)

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$\text{ZnO}(\text{s}) + \text{H}_2(\text{g}) \rightarrow \text{Zn}(\text{s}) + \text{H}_2\text{O}(\text{g})$$ \hspace{1cm} (7)

B.1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. **Calculate** the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{\text{ZnO}(300\degree C)} = -2.90 \times 10^2$ kJ mol$^{-1}$ and $\Delta G_{\text{H}_2\text{O}(300\degree C)} = -2.20 \times 10^2$ kJ mol$^{-1}$, respectively. **4pt**

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E°.

$$\text{Zn}(\text{s}) + \frac{1}{2}\text{O}_2(\text{g}) \rightarrow \text{ZnO}(\text{s}) \hspace{1cm} E^\circ = 1.65 \text{ V}$$ \hspace{1cm} (8)

B.2 A zinc-air battery was discharged at 20 mA for 24 hours. **Calculate** the change in mass of the negative electrode (anode) of the battery. **3pt**
B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environment. Calculate the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are −38 °C (February) and 3776 m, respectively. The atmospheric pressure is represented by

\[P \text{[bar]} = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15} \right)^{5.257} \] \hspace{1cm} (9)

at altitude \(h \text{[m]} \) and temperature \(T \text{[°C]} \). The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is \(\Delta G_{\text{ZnO}}(-38 \text{°C}) = -3.26 \times 10^2 \text{ kJ mol}^{-1} \) at −38 °C and 1 bar.

B.4 Calculate the Gibbs energy change for reaction (6) at 25 °C. Note that the standard reduction potentials, \(E^\circ(\text{Zn}^{2+}/\text{Zn}) \) and \(E^\circ(\text{O}_2/\text{H}_2\text{O}) \) at 25 °C and 1 bar are given as (10) and (11), respectively.

\[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \hspace{1cm} E^\circ(\text{Zn}^{2+}/\text{Zn}) = -0.77 \text{ V} \] \hspace{1cm} (10)

\[\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \hspace{1cm} E^\circ(\text{O}_2/\text{H}_2\text{O}) = 1.23 \text{ V} \] \hspace{1cm} (11)
Цайрын исэлдэн-ангажрах хими

<table>
<thead>
<tr>
<th>Асуульт</th>
<th>А.1</th>
<th>А.2</th>
<th>В.1</th>
<th>В.2</th>
<th>В.3</th>
<th>В.4</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Цайрыг удаан хугацааны туршид гууль болон ган материалын хайлш болгон хэрэглэж ирсэн. Усыг хоргүйжүүлэхийн тулд үйлдвэрлэх баримт бусанд агуулагддаг цайрыг биеэхэлж, гарган авсан тунадасыг ангджирлэх металл цайр болгоод дахин ашигласан.

А хэсэг

25 ºС-т цайрын гидроксид Zn(OH)₂(s)-ийн уусахын тэнцээр баримт болон холбогдох тэнцэрийн тогтмолуудыг тэгшитгэл 1-4-т өгөв.

\[\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \quad K_{sp} = 1.74 \times 10^{-17} \] \hspace{1cm} (1)

\[\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6} \] \hspace{1cm} (2)

\[\text{Zn(OH)}_2(s) + 2\text{OH}^-(aq) \rightleftharpoons \text{Zn(OH)}^2_4^-(aq) \quad K_2 = 6.47 \times 10^{-2} \] \hspace{1cm} (3)

\[\text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq) \quad K_w = 1.00 \times 10^{-14} \] \hspace{1cm} (4)
Цайрын уусах өнцөг, S (ханасан уусмаал дахь цайрын концентрац-г тэгшитгэл 5-т өгөв.

\[S = [\text{Zn}^{2+}(\text{aq})] + [\text{Zn(OH)}_2(\text{aq})] + [\text{Zn(OH)}_4^{2-}(\text{aq})] \] (5)

A.1 Тэгшитгэл 1-4-д тэнцвэр тогтсон үед \([\text{Zn}^{2+}(\text{aq})], \ [\text{Zn(OH)}_2(\text{aq})]\), 6pt\n
[\text{Zn(OH)}_4^{2-}(\text{aq})]\) гурваас рН-ийн ямар мужид нь хамгийн их байхыг тооцоолно уу.

A.2 pH = 7.00-тай \(\text{Zn(OH)}_2(s)\)-ийн ханасан уусмал бэлтгэж, шуусэн. Шуугдасний 5pt pH-ийг 12.00 болтол NaOH нэмсэн. pH-ийг 7.00-с 12.00 болтол ихэсгэхэд тунадасжсан цайрын молийн хувийг тооцоолно уу. Эзэлхүүн болон температурын өөрчлөлтийг тооцоолохгүй.

B хэсэг
Тунадасжсан цайрын гидроксидыг халааж доорх урвалын дагуу цайрын оксидыг гаргаж авдаг.

\[\text{Zn(OH)}_2(s) \rightarrow \text{ZnO}(s) + \text{H}_2\text{O(l)} \] (6)

Цайрын оксидыг устөрөгчтэй урвалд оруулж металл цайр болтол ангижруулна.

\[\text{ZnO}(s) + \text{H}_2(g) \rightarrow \text{Zn}(s) + \text{H}_2\text{O(g)} \] (7)

B.1 Урвал (7)-д устөрөгчийн даралт 1 бар байлгахын тулд уусэлгүй уусны уурын 4pt парциал даралтыг бууруулах шаардлага төлбөр байдал. 300°C-т урвал (7)-г явуулах уншгийн уурын уурын уусны парциал даралтыг дээд хязгаарыг тооцоолох үү.

\[\Delta G_{\text{ZnO}(300°C)} = -2.90 \times 10^2 \text{kJ mоль}^{-1} \] \[\Delta G_{\text{H}_2\text{O}(300°C)} = -2.20 \times 10^2 \text{kJ mоль}^{-1} \]

Металл цайрыг металл-агаарын батарейнд серег электрод (анод)-ын материал болгон ашигладаг. Электрод нь Zn ба ZnO-ээс бурдсан. Батарейд явагдах исэлдэн-ангижрах урвалын тэгшитгэл болон 25°C, 1 бар даралтанд цахилгаан хөдөлгөх хүч (ц.х.х), \(E^\circ\)-г доор харуулав.

\[\text{Zn(s)} + \frac{1}{2}\text{O}_2(g) \rightarrow \text{ZnO(s)} \] \[E^\circ = 1.65 \text{V} \] (8)

B.2 Цайр-агаарын батарейг 20 mA гүйдлэйн хучээр 24 цаг хэрээнэхэд цэ-3рт нэгийг болдог. Батарейн серег электрод (анод)-ын массивын өөрчлөлтийг тооцоолох үү.
Фүжи уул

B.3
Цайдер-агаарын батарейн ц.х.х-ний хүрэлэн буй орчноос хамаарсан өөрчлөлтийг авч үзье. Фүжи уулн орхил 3776 м ёндерт, −38°C (2-р сар)-т ц.х.х-ийг **тооцолно уу.**

Атмосферын даралтыг h [м] эндер ба T[°C] температураас хамааруулан даарах томьеогоор тооцдог:

$$P \,[\text{bar}] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257}$$ \hspace{1cm} (9)

Атмосфер дэх хүчилтөрөгчийн молийн харьцаа 21%.

Урвал (8)-ийн Гиббсийн энергийн өөрчлөлтийг 25°C-д тооцоолно уу.

25°C, 1 бар даралтад $E^\circ (\text{Zn}^{2+}/\text{Zn})$ ба $E^\circ (\text{O}_2/\text{H}_2\text{O})$ гэсэн стандарт ангиграх потенциалуудыг тэгшитгэл (10) ба (11)-т өгөв.

1. $\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \hspace{1cm} E^\circ (\text{Zn}^{2+}/\text{Zn}) = -0.77 \text{ V}$ \hspace{1cm} (10)

2. $\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \hspace{1cm} E^\circ (\text{O}_2/\text{H}_2\text{O}) = 1.23 \text{ V}$ \hspace{1cm} (11)
Цайрын исэлдэн-ангийрал химий

А хэсэг

А.1 (6 pt)

< pH <
A.2 (5 pt)
В хэсэг

В.1 (4 pt)

\[p_{H_2O} = 6\,\text{бар} \]

В.2 (3 pt)

______________ г
\[\Delta G^\circ = \text{ж моль}^{-1} \]
IChO
Problem 5
Cover sheet

Please return this cover sheet together with all the related question sheets.
Mysterious Silicon

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as $\text{R}^1\equiv\text{Si}\equiv\text{Si}\equiv\text{R}^1$ (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

$$\text{R}^1\equiv\text{Si}\equiv\text{Si}\equiv\text{R}^1 + \text{H}_2\text{C}\equiv\text{CH}_2 \rightarrow \begin{array}{c} \text{Si} \equiv \text{Si} \\ \text{R}^1 \end{array} \begin{array}{c} \text{R}^1 \end{array}$$

When $\text{R}^1\equiv\text{Si}\equiv\text{Si}\equiv\text{R}^1$ is treated with an alkyne ($\text{R}^2\equiv\text{C}\equiv\text{C}\equiv\text{R}^2$), the four-membered-ring compound A is formed as an initial intermediate. Further reaction of another molecule of $\text{R}^2\equiv\text{C}\equiv\text{C}\equiv\text{R}^2$ with A affords isomers B and C, both of which have benzene-like cyclic conjugated structures, so-called ‘disilabenzences’ that contain a six-membered ring and can be formulated as $(\text{R}^1\equiv\text{Si})_2(\text{R}^2\equiv\text{C})_4$.
The 13C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for B and one signal for C.

A.1 **Draw** the structural formulae of A, B, and C using R^1, R^2, Si, and C, with one of the possible resonance structures.

A.2 **Calculate** the aromatic stabilization energy (ASE) for benzene and C (in the case of $R^1 = R^2 = \text{H}$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

\[
\begin{align*}
\text{H}_2\text{C} &= \text{CH}_2 & + & \text{H}_2 & \rightarrow & \text{H}_3\text{C} &= \text{CH}_3 & \Delta H = -135 \text{ kJ mol}^{-1} & (1) \\
\text{H}_2\text{Si} &= \text{CH}_2 & + & \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{CH}_3 & \Delta H = -213 \text{ kJ mol}^{-1} & (2) \\
\text{H}_2\text{Si} &= \text{SiH}_2 & + & \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{SiH}_3 & \Delta H = -206 \text{ kJ mol}^{-1} & (3) \\
\text{H}_2\text{Si} &= \text{SiH}_2 & + & 3 \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{SiH}_3 & \Delta H = -173 \text{ kJ mol}^{-1} & (4) \\
\text{HSi} &= \text{SiH} & + & 3 \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{SiH}_2 & \Delta H = -326 \text{ kJ mol}^{-1} & (5) \\
\text{HSi} &= \text{SiH} & + & 3 \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{SiH}_2 & \Delta H = -368 \text{ kJ mol}^{-1} & (6) \\
\text{HSi} &= \text{SiH} & + & 3 \text{H}_2 & \rightarrow & \text{H}_3\text{Si} &= \text{SiH}_2 & \Delta H = -389 \text{ kJ mol}^{-1} & (7)
\end{align*}
\]

Fig. 1
When a xylene solution of C is heated, it undergoes isomerization to give an equilibrium mixture of compounds D and E. The molar ratio is D : E = 1 : 40.0 at 50.0°C and D : E = 1 : 20.0 at 120.0°C.

A.3 Calculate ΔH for the transformation of D to E. Assume that ΔH does not depend on temperature.

The isomerization from C to D and to E proceeds via transformations of π-bonds into σ-bonds without breaking any σ-bonds. A 13C NMR analysis revealed one signal for the Si2C4 skeleton of D and two signals for that of E. The skeleton of D does not contain any three-membered rings, while E has two three-membered rings that share an edge.

A.4 Draw the structural formulae of D and E using R1, R2, Si, and C.

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl4 using Na2SiF6 was carried out as follows.

B.1 Write the balanced equation for the reaction of Na2SiF6 with Ce2(SO4)3.

(Substance losses by e.g. evaporation are negligible during the following operations.)

Na2SiF6(x [g]) was added to CCl4 (500.0 g) and heated to 300°C in a sealed pressure-resistant reaction vessel. The unreacted Na2SiF6 and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl4 (solution H). The 29Si and 19F NMR spectra of solution H showed SiF4 as the only silicon compound. In the 19F NMR spectrum, in addition to SiF4, signals corresponding to CFCl3, CF2Cl2, CF3Cl, and CF4 were observed (cf. Table 1). The integration ratios in the 19F NMR spectrum are proportional to the number of fluorine nuclei.

<table>
<thead>
<tr>
<th>19F NMR data</th>
<th>CFCl3</th>
<th>CF2Cl2</th>
<th>CF3Cl</th>
<th>CF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration ratio</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

\[3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6 \] \hspace{1cm} (8)

Solution H (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H₂SiF₆ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na₂SiF₆ (aqueous solution J).

The precipitate of unreacted Na₂SiF₆ and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution K; 10.0 L).

Then, additional precipitation titrations using solution G were carried out, and the endpoints of the titrations with G were as follows:

- For solution J (entire amount): 61.6 mL.
- For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

| **B.2** | Calculate the mass of the NaCl produced in the reaction vessel (information underlined), and calculate the mass (x [g]) of the Na₂SiF₆ used as a starting material. | 15pt |
| **B.3** | 77.8% of the CCl₄ used as a starting material was unreacted. Calculate the mass of CF₃Cl generated. | 8pt |
Цахиур нь нүүрсчүрүгчийн нэгэн адил 14-р бүлгийн элемент болохын тэдгээрийн шинж чанар эрс ялгатай байдаг.

A хэсэг

\(R^1 - \text{Si} \equiv \text{Si} - R^1 \) (R: органик халагч) гэх \text{Si-Si} \text{ гурвал} сам-\text{Si-Si} (R: органик халагч) гэх Si-Si гурвалсан нэгдэл нь урвалын өндөр идэвхтэй байдгаараа C-C гуравчийн нэгдлүүдээс ялгаатай. Жишээ нь үүнийг этилентэй урвалд оруулбал дөрвөн гишүүнтэй цагираг агуулсан бүтээгдэхүүн оролцдог. \n
\[
\begin{align*}
R^1 - \text{Si} \equiv \text{Si} - R^1 \text{ + } H_2C\equiv CH_2 \longrightarrow & \text{Si=Si} \text{ + } R^1 \text{ + } R^1
\end{align*}
\]

\(R^1 - \text{Si} \equiv \text{Si} - R^1 \) бодисын алкин (R\(^2\)-C \equiv C \(-R^2\))-аар уйлчлээд дөрвөн гишүүнтэй цагираг бүхий \(A \) бодис эхний завсрын бүтээгдэхүүн хэлбэрээр угсдаг. \(A \) бодис өөр нэг \(R^2\)-C \equiv C \(-R^2\) молекултай урвалд орж \(B \) ба \(C \) изомеруудыг угсдуг бөгөөд эдгээр нь хоёулал бензолней тестий конъюгациидсан цагираг
бутэцтэй бөгөөд "дисилабензол" гэж нэрлэдэг. \((R^1-\text{Si})_2(R^2-\text{C})_4\) гэж томъёологдох зурааг анх гишүүнтэй цагираг агуулдаг.

\[
R^1-\text{Si} \equiv \text{Si} \equiv R^1 + R^2-\text{C} \equiv \text{C} \equiv R^2 \rightarrow \begin{array}{c}
A \\
\end{array} R^2-\text{C} \equiv \text{C} \equiv R^2 \rightarrow \begin{array}{c}
B \\
\end{array} + \begin{array}{c}
C
\end{array}
\]

\(^{13}\text{C}\) NMR шинжилгээгээр \(\text{Si}_2\text{C}_4\) зураан гишүүнтэй ундын цагираг нь \(B\) бодисынх хоёр, \(C\) бодисынх нэг сигнал өгсөн.

<table>
<thead>
<tr>
<th>A.1</th>
<th>(R^1, R^2, \text{Si}, \text{C}) ашигласан (A, B, C) бодисуудын боловжит нэг резонанс бутцийн томъёог зурна уу.</th>
</tr>
</thead>
</table>

| A.2 | Доор үзүүлсэн (Зураг 1) зарим ханаагүй системийн устөрөгжүүлэх урвалын энтальпийн өөрчлөлтийг ашиглан бензол ба \(\text{C}\) бодисын \((R^1 = R^2 = \text{H}\) гэж үзнэ) ароматик тогтворжилтын энергийг зэрэг тогтвортойгаар тооцоолно уу. |

\[
\begin{align*}
\text{H}_2\text{C} &= \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{C} &= \text{CH}_3 \quad \Delta H = -135 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} &= \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{CH}_3 \quad \Delta H = -213 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} &= \text{SiH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{SiH}_3 \quad \Delta H = -206 \text{ kJ mol}^{-1} \\
\text{H}_2\text{C} &= \text{C} \rightarrow 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} &= \text{SiH}_2 \quad \Delta H = -173 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} &= \text{SiH}_2 \quad \Delta H = -326 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} &= \text{SiH}_2 \quad \Delta H = -368 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_2\text{Si} &= \text{SiH}_2 \quad \Delta H = -389 \text{ kJ mol}^{-1}
\end{align*}
\]

Зураг 1
С бодисын ксилолийн уусмалыг халаахад изомержих урвалд орж, D ба E нэгдлүүдийн тэнцвэрээр холимогийг уусгана. Молийн харьцаа 50.0 °C-д $D : E = 1 : 40.0$ ба 120.0 °C-д $D : E = 1 : 20.0$ байна.

A.3

ΔH нь E бодис болж хувирах урвалын ΔH-г төоцөлнө уу. ΔH температураас хамаарахгүй гэж үзнэ.

A.4

R_1, R_2, Si, C ашиглан D ба E бодисуудын бүтцийн томъёог зурна уу.
SiF₄ гидролизын урвалд дараах тэгшитгэл (8)-ийн дагуу орж H₂SiF₆ үүсгэдэг:

\[
3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6
\] (8)

Н уусмал (10 мл) дээр илуу дах гэрээний үс нэмж SiF₄-ийг бүрэн гидролизод оруулсан. Усан уусмал дах гэрээний үс нэмж H₂SiF₆-ийг салгасны дараа саармажүүлж, бүрэн Na₂SiF₆ (уусмал K; 10.0 л) болгон хувиргав.

Эхний шатанд шууж зайлуусан (доогуур зураастай) урвалд ороогүй Na₂SiF₆ ба NaCl-ын тунадасыг усан уусмал (усман H₂SiF₆) салгасны дараа саармажүүлж, бүрэн Na₂SiF₆ (уусмал K; 10.0 л) болгон хувиргав.

Дараа нь G уусмалыг ашигласан тунадасжих урвалын титрэлт хийхэд титрэлтээр эхийн эцсийн цэгүүд дараах байдалттай байна:
- J уусмалд (бух уусмал): 61.6 мл.
- 100 мл K уусмалд: 44.4 мл.

NaCl эсвэл SiO₂ заргцэн орших нь тунадасжих титрэлтэд ямар ч нөлөө үзүүлэхгүй гэдгийг анхарна уу.

<table>
<thead>
<tr>
<th>В.2</th>
<th>Урвалын саванд (доогуур зураастай мэдээлэл) үүсэн NaCl-ийн масс, эх бодис болон ашигласан Na₂SiF₆-ын массыг (x) (\text{г}) тус тус тооцоолно уу.</th>
</tr>
</thead>
</table>

| В.3 | Эх бодис болгоо ашигласан CCl₃-ийн 77.8 % нь урвалд ороогүй. Ууссэн CF₃Cl-ийн массыг тооцоолоо уу. |

Таблица 1

<table>
<thead>
<tr>
<th>¹⁹F ЦСР дун</th>
<th>CFCl₃</th>
<th>CF₂Cl₂</th>
<th>CFCl</th>
<th>CF₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Интеграцийн харьцаа</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Үйлэх арга

A.1 (9 pt)

<table>
<thead>
<tr>
<th>A (3 pt)</th>
<th>B (3 pt)</th>
<th>C (3 pt)</th>
</tr>
</thead>
</table>

A.2 (7 pt)

$C_6H_6 : \text{к Ж моль}^{-1}$, $C : \text{к Ж моль}^{-1}$
\[\Delta H = \text{кЖ моль}^{-1} \]

A.3 (6 pt)

A.4 (10 pt)

D (5 pt) E (5 pt)
Part B

<table>
<thead>
<tr>
<th>B.1 (5 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.2 (15 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(Ургэлжлэл дараагийн хуудсанд)
<table>
<thead>
<tr>
<th>Chemical</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>r</td>
</tr>
<tr>
<td>Na₂SiF₆</td>
<td>r</td>
</tr>
</tbody>
</table>
B.3 (8 pt)

CF₃Cl: ______________ g
IChO
Problem 6
Cover sheet

Please return this cover sheet together with all the related question sheets.
The Solid-State Chemistry of Transition Metals

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M$^{n+}$) in the magma is incorporated into the silicate minerals. The M$^{n+}$ studied in the problem are coordinated by oxide ions (O$^{2-}$) and adopt a four-coordinate tetrahedral (T_d) geometry in the magma and six-coordinate octahedral (O_h) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M$^{n+}$ between the silicate minerals and magma, D, can be expressed by:

$$D = \frac{[M]_s}{[M]_l}$$

where $[M]_s$ and $[M]_l$ are the concentrations of M$^{n+}$ in the silicate minerals and the magma, respectively. The table below shows the D values of Cr$^{2+}$ and Mn$^{2+}$ as examples.

<table>
<thead>
<tr>
<th></th>
<th>Cr$^{2+}$</th>
<th>Mn$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>7.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Let Δ_O and CFSE^O be the energy separation of the d-orbitals of M^{n+} and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

A.1 Calculate $|\text{CFSE}^O - \text{CFSE}^T| = \Delta\text{CFSE}$ in terms of Δ_O for Cr^{2+}, Mn^{2+}, and Co^{2+}; assume $\Delta_T = \frac{4}{9}\Delta_O$.

A.2 A linear relationship is observed by plotting $\ln(D)$ against $\Delta\text{CFSE} / \Delta_O$ in the Cartesian coordinate system shown below. Estimate D for Co^{2+}.

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

A.3 Choose the appropriate set of lattice enthalpies [kJ mol$^{-1}$] from one of the options (a) to (f).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
Part B

A mixed oxide A, which contains La$^{3+}$ and Cu$^{2+}$, crystallizes in a tetragonal unit cell shown in Fig. 1. In the \([\text{CuO}_6]\) octahedron, the Cu-O length along the z-axis (l_z) is longer than that of the x-axis (l_x), and \([\text{CuO}_6]\) is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals ($d_{x^2-y^2}$ and d_{z^2}).

Fig. 1

A can be synthesized by thermal decomposition (pyrolysis) of complex B, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of B in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO$_2$. The total weight loss during the formation of A from B is 63.6%. It should be noted that only water and CO$_2$ are released in the pyrolysis reaction.

B.1	**Write** the chemical formulae for A and B.	6pt
B.2	**Calculate** l_x and l_z using Fig. 1.	4pt
B.3	For Cu$^{2+}$ in the distorted [CuO$_6$] octahedron in A of Fig. 1, **write** the names of the split e_g orbitals ($d_{x^2-y^2}$ and d_{z^2}) in (i) and (ii), and **draw** the electron configuration in the dotted box in your answer sheet.	4pt
A is an insulator. When one La\(^{3+}\) is substituted with one Sr\(^{2+}\), one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr\(^{2+}\)-doped A shows superconductivity below 38 K. When a substitution reaction took place for A, \(2.05 \times 10^{27}\) holes \(m^{-3}\) were generated.

B.4 Calculate the percentage of Sr\(^{2+}\) substituted for La\(^{3+}\) based on the mole ratio in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

Cu\(_2\)(CH\(_3\)CO\(_2\))\(_4\) is composed of four CH\(_3\)CO\(^-\) coordinated to two Cu\(^{2+}\) (Fig. 2A). Cu\(_2\)(CH\(_3\)CO\(_2\))\(_4\) exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four CH\(_3\)CO\(^-\) and an axis passing through the two Cu\(^{2+}\), all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of CH\(_3\)CO\(^-\), a “cage complex” is formed. The cage complex Cu\(_4\)(L\(_1\))\(_4\) is composed of planar dicarboxylate L\(_1\) (Fig. 2B) and Cu\(^{2+}\) (Fig. 2C). The angle \(\theta\) between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The \(\theta\) is 0° for L\(_1\). Note that hydrogen atoms are not shown in Fig. 2.
C.1 The θ of the planar dicarboxylate L_2 below is fixed to 90˚. If the composition of the cage complex formed from L_2 and Cu$^{2+}$ is $Cu_n(L_2)_m$, give the smallest integer combination of n and m. Assume that only the CO$_2^-$ groups of L_2 form a coordination bond to Cu$^{2+}$ ions.

![Diagram of L2 with θ = 90˚]
A zinc complex, \(\text{Zn}_4 \text{O}(\text{CH}_3\text{CO}_2)_6 \), contains four tetrahedral \(\text{Zn}^{2+} \), six \(\text{CH}_3\text{CO}_2^- \), and one \(\text{O}^{2-} \) (Fig. 3A). In \(\text{Zn}_4 \text{O}(\text{CH}_3\text{CO}_2)_6 \), the \(\text{O}^{2-} \) is located at the origin, and the three axes passing through the carbon atoms of \(\text{CH}_3\text{CO}_2^- \) are oriented orthogonal relative to each other. When \(p \)-benzenedicarboxylate (Fig. 3B, \(\text{L}_3, \theta = 180^\circ \)) is used instead of \(\text{CH}_3\text{CO}_2^- \), the \(\text{Zn}^{2+} \) clusters are linked to each other to form a crystalline solid (X) that is called a “porous coordination polymer” (Fig. 3C). The composition of X is \([\text{Zn}_4 \text{O}(\text{L}_3)_3]_n \), and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral \(\text{Zn}^{2+} \) cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

C.2 X has a cubic unit cell with a side length of \(a \) (Fig. 3C) and a density of 0.592 g cm\(^{-3}\). **Calculate** \(a \) in [cm].

C.3 X contains a considerable number of pores, and 1 g of X can accommodate \(3.0 \times 10^2 \) mL of \(\text{CO}_2 \) gas in the pores at 1 bar and 25 °C. **Calculate** the average number of \(\text{CO}_2 \) molecules per pore.
Шилжилтийн металлны нэгдлийн хатуу төлөвийн химийн нийт онооны 13 %

<table>
<thead>
<tr>
<th>Асуульт</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>C.1</th>
<th>C.2</th>
<th>C.3</th>
<th>Нийт</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оноо</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Унэлгээ</td>
<td></td>
</tr>
</tbody>
</table>

Сакуражима арал дахь галт уул

А хэсэг
Япон бол дэлхийд хамгийн олон галт уултай улс орнон нэг юм. Силикатын ердэс угссаа галт уул мэгдэхад магма дахь шилжилтийн металлын ионуудын эрдсүүдийн хэсгээр (Mⁿ⁺) нь силикатын ердсүүдийн бүрэлдэхүүнд орж ирдэг. Энэ бодлогонд судлах Mⁿ⁺-ийн оксид талууд (O^{2−})-оо ар төрлөхдөө, магмад дөрөн хүрээллийн атомтай тетраэдр (Td) геометртэй, силикатын ар төрлөхдөө, магмад дөрөн хүрээллийн атомтай октаздр (Oh) геометртэй, хоёулаа өндөр спин-электрон кофигураццийг дараах байдлын илэрхийлж болно:

\[
D = \frac{[M]_i}{[M]_l}
\]

энд [M]_i ба [M]_l нь харгалзан силикатын ердсээ ба магма дахь Mⁿ⁺-ийн концентрация юм. Доорх хуснэгтэд Cr²⁺-б M_n²⁺-ийн хувьд D-ийн утгыг харуулав.

<table>
<thead>
<tr>
<th>Cr<sup>2+</sup></th>
<th>Mn<sup>2+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
</tr>
</tbody>
</table>
Октаэдр O_h орон дахь M^{n+}-ийн d-орбиталын хуваагдлын энергий нь Δ_O, талст орны тогтворжилтын энергий (CFSE) нь CFSEO ба гэж үзэгдээ. Харин тетраэдр T_d оронд харгалзан Δ_T ба CFSET ба гэж үзэгдээ.

A.1

Cr^{2+}, Mn^{2+}, Co^{2+}-ийн хувьд |CFSEO−CFSET| = ΔCFSE-ийг тооцоолж Δ_O-оор брт илэрхийлнэ. $\Delta_T = 4/9 \Delta_O$ гэж үзэн.

A.2

Дараах зурагт үзүүлсэн Декартын координатын систем өгөр lnD-ийн ΔCFSE/\Delta_O$-ээс хамаарах хамаарлыг зурахдаа шугаман хамаарал ажиглагданаа. Co^{2+}-ийн хувьд D-г нь Δ CFSE-ийг тооцөө мөн тооцоолно уу.

A.3

(a) - (f) сонголтуудаас тохирох талст төрлөгийн энтальпи [кЖ моль$^{-1}$]-ийн багцыг 3рт сонгоно уу.

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
Зүрэг 1.

Металлын хлоридуудыг сквараины хүчил C₂H₄O₄ (хоёр суурьт хүчил) агуулсан аммиакийн шингэержүүлсэн уусмалд холиход B комплекс үүсэх ба B-г дулааны задрал (пиролиз)-д оруулж A-г синтезлэд.

Хуурай агаарт 200°C хүрэх температурт B-ийн пиролизоор талстжсан усаа алдсанаас болж жин нь 29.1%-ийг багасгаж, цааш нь 700°C хүрэх халаахад CO₂ ялгарснаас дахин жин нь багасдаг. B-ээс A үүсэх үеийн нийт жингийн алдагдал 63.6% байна. Пиролизийн урвалд зөвхөн ус ба CO₂ ялгарсан болохыг анхаарна уу.
A нь тусгаарлаж юм. Нэг La\(^{3+}\) ионыг нэг Sr\(^{2+}\) ионоор халахад талст торд цахилгаан дамжуулах чадвартай нэг нух үүсээн. Уүний дунд Sr\(^{2+}\)-жүлсэн A нь 38 K-ээс доош температурт хэт дамжуулагч болдог. Халах урвал явагдах A-д нүх нүхийн концентрац 2.05 × 10\(^{27}\) м\(^{-3}\) байна.

В.4 Халах урвал дахь молийн харьцаанд үндэслэн Sr\(^{2+}\)-ээр халагдсан La\(^{3+}\)-ийн 4pt долийг тооцооллоо ўу. Халах урвааар ионуудын валент болон талстын бүтэц өөрчлөлддөггүй анхаарна ўу.

С хэсэг
Cu\(_2\)(CH\(_3\)CO\(_2\))\(_4\) нь дөрвөн CH\(_3\)CO\(_2\)-оор хүрээлэгдсэн хоёр Cu\(^{2+}\)-эс тогтоно (Зураг 2-ын А). Дөрвөн CH\(_3\)CO\(_2\)-ийн нүүрстөрөгчийн атомууд хоёр тэнхлэгийн дагуу, хоёр Cu\(^{2+}\) нь негеэ тэнхлэгийн дагуу тус тус байрласан, бүгд бие биетэй ээ харицаан ортогональ (перпендикуляр) чиглэл бүхий Cu\(_2\)(CH\(_3\)CO\(_2\))\(_4\) нь бүтцийн энд тэгш хэмтэй байна.

CH\(_3\)CO\(_2\)-ын оронд дикарбоксилатын лиганд хэрэглэхэд "торын комплекс" уусдаг. Cu\(_4\)(L\(_1\))\(_4\) (Зураг 2-ын C) нь хавтгай дикарбоксилат L\(_1\) (Зураг 2-ын В) ба Cu\(^{2+}\)-эс тогтоно. Зураг 2-ын В-д карбоксилатын координацын сумаараа засан хоёр чиглэлбүхий хоорондох \(\theta\) энцгүй нь тог-рын комплексын бүтцийг тодорхойлдог. L\(_1\)-ийн хувьд \(\theta\) энцгүй нь 0° байна. Зураг 2-т устэрэгчийн атомыг харуулаагүй болохыг анхаарна ўу.

Зураг 2
C.1 Доорх хавтгай дикарбоксилат L_2-ийн θ нь 90°-байдаг. Хэрэв L_2 ба Cu^{2+}-ээс ууссан төрөлдөх комплексыг хэрэглээгүйгүй $Cu_{n}(L_2)_m$ байдаг бол n ба m-ийн хамгийн бага бүхэл утгыг тодорхойлоо.

L_2-ийн зөвхөн CO_2^- бүлгүүд Cu^{2+}-ийн координацын холбоо уусгдаг гэж унээ.
Цайрын комплекс, Zn₄O(CH₃CO₂)₆ нь тетраэдр байрлалттай деревен Zn²⁺ зургаан CH₃CO₂⁻, нэг O²⁻ агуулдаг (Зураг 3-ын A). Zn₄O(CH₃CO₂)₆ₐ D O²⁻ нь тэнхлэгийн эхэл дэр байрладаг ба гурван тэнхлэгийн дагууд нүүрстөрөгчийн атом нь байрлах CH₃CO₂⁻-үүд нь хоорондоо харилицан ортогонал чиглэлтэй байна.

CH₃CO₂⁻-ийн оронд п-бензолдикарбоксилат (Зураг 3-ын B, L₃, θ = 180°)-ийг ашиглахад Zn²⁺ кластерууд хоорондоо холбдогж "сувэргэл эмэгэн орчаан" (Зураг 3-ын C) гэж нэрлэгддэг талст хатуу (X)-г уусгэдэг. X-ийн найрлага нь [Zn₄O(L₃)₃]ⁿ⁻ бөгөөд нано хэмжээтэй хөндий бүхий куб талст бутэцтэй. Зураг 3-ын D-д нэг хөндийд буцар гарчирч элбэрээр, Zn²⁺-ийн кластерийг Зураг 3-ын C, D-д хар саарал олон талтаар тус тус дурсээлэх болно. Устөрөгчийн атомыг Зураг 3-т харуулаагүй болохыг анхаарна уу.

Зураг 3

| C.2 | X нь хажуу талын урт нь а байх (Зураг 3-ын C), 0.592 g cm⁻³ нягттай куб эгэл 5pt уүрээс бүрэн. α-ийг [см]-ээр тооцоолоо уу. |
| C.3 | X нь нэлээд олон тооны хөндий агуулдаг бөгөөд 1 бар даралт, 25°C-т 1 g X 5pt нь хөндийдөө 3.0 × 10² ml CO₂ хийг багтаах чадвартай. Нэг хөндийд байх CO₂-ын молекултын дундаж тоог тооцоолоо уу. |
Шилжилтийн металлын хатуу төлөвийн хими

А хэсэг

А.1 (6 pt)

\[
\text{Cr}^{2+} : \Delta \Delta O, \text{Mn}^{2+} : \Delta O, \text{Co}^{2+} : \Delta O
\]
A.2 (3 pt)

\[\ln D \]

\[\Delta CFSE / \Delta_0 \]

\(D : \) ______________________

A.3 (3 pt)

B хэсэг

B.1 (6 pt)

A: __________________________, B: __________________________

B.2 (4 pt)

\[l_x = \quad \text{nm}, \quad l_z = \quad \text{nm} \]
B.3 (4 pt)

(i) :

(ii) :

\[e_g \]

| Energy |

\[
\begin{array}{c}
\text{(i)} \\
\text{(ii)} \\
\end{array}
\]

B.4 (4 pt)
<table>
<thead>
<tr>
<th>\textbf{C.1} (5 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n =) \hspace{1cm} (m =) \hspace{1cm}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\textbf{C.2} (5 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a =) \hspace{1cm} \text{cm}</td>
</tr>
</tbody>
</table>
C.3 (5 pt)
Please return this cover sheet together with all the related question sheets.
Playing with Non-benzenoid Aromaticity

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Photo courtesy: Tohoku Univ.

Part A

Linearifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.
A.1 **Draw** the structures of 2 and 6 and clearly identify the stereochemistry where necessary.

Then, ketone 4 is converted into ester 15. Compound 8 (molecular weight: 188) retains all the stereocenters in 7. Compounds 9 and 10 have five stereocenters and no carbon-carbon double bonds. Assume
that H_2^{18}O is used instead of H_2^{16}O for the synthesis of ^{18}O-labelled-linearifolianones 13 and 14 from 11 and 12, respectively. Compounds 13 and 14 are ^{18}O-labelled isotopomers. Ignoring isotopic labelling, both 13 and 14 provide the same product 15 with identical stereochemistry.
A.2 Choose the appropriate structure for A.

A.3 Draw the structures of 8-14 and clearly identify the stereochemistry where necessary. Also, indicate the introduced 18O atoms for 13 and 14 as shown in the example below.
Part B

Compound 19 is synthesized as shown below. In relation to non-benzenoid aromaticity, 19 can be used as an activator for alcohols, and 20 was converted to 22 via ion-pair intermediate 21. Although the formation of 21 was observed by NMR, 21 gradually decomposes to give 18 and 22.

\[\text{19} \]

B.1 Draw the structures of 17-19 and 21. Identifying the stereochemistry is not necessary.

1H NMR (CD3CN, ppm) 20: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)
21: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)
Бензолын бус ароматик шинжээр тоглоцгооё

<table>
<thead>
<tr>
<th>Нийт онооны 13 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулаа</td>
</tr>
<tr>
<td>А.1</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Юнэлгээ</td>
</tr>
</tbody>
</table>

Профессор Нозоэ (1902-1996) нь органик химийн тархан тархсан бензолын бус ароматик нэгд-лүүдийн судалгааны эхлэлийг тавьсан.

Профессор Нозоэ (1902-1996) нь органик химийн тархан тархсан бензолын бус ароматик нэгд-лүүдийн судалгааны эхлэлийг тавьсан.

Хүндэтгэлийн зураг: Тохокүгийн Их Сургууль

А хэсэг

Лайнерийфолианын нь зажлуур навчтал зоосон цэцг (Inula linariifolia)-ээс ялган авсан өвөрмөц бүтэцтэй байгалийн нэгдлүүл юм. Валенцин (1)-ээс нэг шаттай урвалаар 2 нэгдэл үүсдэг ба 3 нэгдлээр дамжин гурван шаттай хувирлаа 4 кетон үүсдэг. Эримофиллен (5) нь мөн дервэн шаттай хувирлаа 6 нэгдэл үүсдэг.
Зажлуур навчит зоосон цэцэг (*Inula linariifolia*)

Кетон 4 нь нийлмэл эфир 15-г уусгэд. 7 нэгдлийн бүх стерео төвүүд нь нэгдэл 8 (молькул масс: 188)-д хэвээр агуулагддаг. Нэгдэл 9 ба 10 нь таван стерео төвийг буцах нь нуурын буцаагч-нуурын буцаагчийн
хоорондын давхар холбо байхгүй. $H_2^{16}O$ ордон H$_2^{18}O$ ашиглан 11 ба 12 нэгдлүүд ^{18}O-тэмдэгт атомтай лайнериийфолианоонууд балс 13 ба 14 нэгдлүүдийг синтезлэдг. 13 ба 14 нь ^{18}O-тэмдэгт атомтай изотопомерууд юм. Изотоп тэмдэгт атомыг нь тооцожгүй бол 13 ба 14 нь стереохимийн хувьд ижил 15 нэгдлийг юүсгэдг.
A.2 А нэгдлийн тохирох бүтцийг сононо уу.

\[
\begin{array}{cccc}
\text{I} & F_3C-S-OH & \text{II} & F_3C-S-NH_2 \\
\text{III} & O-S-CF_3 & \text{IV} & O-S-CF_3 \\
\end{array}
\]

A.3 8-14 нэгдлүүдийн бүтцийг дурсэлж, шаардлагатай байрлал дахь стереохимийг нь тогтооно уу. Мөн 13 ба 14 нэгддэл дэх \(^{18}\text{O}\) атомыг доорх зурагт узүүлсэн шиг темдэглэнэ уу.
В хэсэг

19 нэгдлийг дор үзүүлсний дагуу синтезлэдгээ. Бензолын бус ароматиктай холбоотойгүй, 19 нэгдлийг спиртний идэвхжүүлэгчээр ашиглаж 20 нэгдлийг ионы хос завсрын бутээгдэхүүн 21 нэгдлээр дамжуулан 22 нэгдэл хувиргадаг. 21 нэгдэл үүсдэг нь ЦСР спектрээр батлагдсан ч аажим задарч 18 ба 22 нэгдлүүдийг үүсгэдгээ.

\[
\begin{align*}
\text{16} & \xrightarrow{\text{Br}_2, \text{CH}_3\text{COOH}} 17 \\
\text{Et}_3\text{N} & \xrightarrow{\text{CH}_2\text{Cl}_2} 18 \\
\text{18} & \xrightarrow{\text{Cl}_2\text{S}_2\text{Cl}_2} 19
\end{align*}
\]

\[
\begin{align*}
\text{20} + 19 & \xrightarrow{-\text{HCl}} 21 \\
21 & \xrightarrow{} \text{22} + 18
\end{align*}
\]

\[\text{H NMR (CD}_3\text{CN, ppm)}: 20: 6.7.4-7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)\]

\[21: 6.8.5-7.3 (15H), 5.5 (2H), 3.4 (2H)\]

В.1 17-19 ба 21 нэглүүдийн бүтцийг дурсэлэн уу. Стереохими шаардлагагүй. 10pt
Бэнзолын бус ароматик шинжээр тоглоцгооё

A хэсэг

<table>
<thead>
<tr>
<th>A.1 (5 pt)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (2 pt)</td>
<td>6 (3 pt)</td>
</tr>
</tbody>
</table>

A.2 (2 pt)
<table>
<thead>
<tr>
<th>В.1 (10 pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 (2 pt)</td>
</tr>
<tr>
<td>18 (2 pt)</td>
</tr>
<tr>
<td>19 (3 pt)</td>
</tr>
<tr>
<td>21 (3 pt)</td>
</tr>
</tbody>
</table>
Please return this cover sheet together with all the related question sheets.
Dynamic Organic Molecules and Their Chirality

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

Score

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called \([n]\)carbohelicenes (here, \(n\) represents the number of six-membered rings) (see below). \([4]\)Carbohelicene (\([4]\)C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.
Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

| A.1 | Draw the structures of A–C. Stereoisomers should be distinguished. | 9pt |
| A.2 | Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The 1H NMR chemical shifts of D are listed below. Draw the structure of D. |

\[
\begin{align*}
[D (\delta, \text{ ppm in CS}_2, \text{ r.t.}), & \quad 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]
\end{align*}
\]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (M) or (P) as shown below.

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.
Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound \(\text{E} \) contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as \((P, P, P)\) as shown below.

![Diagram of compound E](image)

\[(1, 2, 3) = (P, P, P)\]

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of \(\text{F} \), \((P)-\text{F} \), multiple helicene \(\text{G} (C_{66}H_{36}) \) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, identify all the possible stereoisomers of \(\text{G} \) formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and \(M \) and \(P \) labels according to the same numbering. For instance, the other stereoisomers of \(\text{E} \) should be listed as \((1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), \) and \((M, P, M)\).
Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 **Draw** the structure of intermediate I (its stereochemistry is not required). 3pt
B.2 Starting from the optically active precursor J, the same reaction sequence gives the optically active sumanene derivative K. The stereocenters in J suffer no inversion during the metathesis reaction. **Draw** the structure of K with the appropriate stereochemistry.
Динамик органик нэгдлүүд ба тэдгээрийн хираль чанар

<table>
<thead>
<tr>
<th>Нийт онооны 11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асульт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэлгээ</td>
</tr>
</tbody>
</table>

A хэсэг

Фото-урвал нь дараах жишээнд үзүлсэн тэгүүлэн адил аяа явагддаг.
Жич: Даалгавар 8-ын бүх асуултдаа хариултахдаа хөл өөр болон давхар холбоог зэлжэн зурарай. Конъюгацилдсан \(\pi \) системийг тэмдэглэдэг цагирагийг ашиглахгүй.

| A.1 | А–С нэгдлүүдийн бүтцийг дурсэлэн үү. Стереоизомеруудийг ялгаж бичнэ ҮҮ. |

| A.2 | 5]карбохелиценийг тохирох эх бодис болон фосфон даснаас синтезлэхэд 5]карбохелицен маш бага уусч түүний оронд 2 Да-оор бага молекул масстай D нэгдлүүд үүсдэг. D нэгдлийн 1\(^{1} \)Н ЦСР спектрийн химийн шилжилтийн утгыг дор егсэн болов. D нэгдлийн бүтцийг дурсэлэн үү. \[D (\delta, \text{ ppm } \text{CS}_2-\text{д уусган, тасалгааны температурт}), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]\] |

[5]- ба түүнээс дээш гишүүнтэй [n]карбохелицен нь хираль шинж чанартай байдаг ба тасалгааны температурын вент хооронд энантиомерууд нь қырзааныг удаан шилждэг. [n]карбохелицений хираль шинж чанарыг (M) юмуу (P) гэж тодорхойлдог ба дараах зурагт үзүүлэв.

4-өөс дээш тоотой [n]карбохелицений энантиомеруудийг хираль баганан хроматографиар ялгах аргыг профессор Ёошио Окамото боловсруулсан юм.

Хүндэтгэлийн зураг: Японы шагналын сан
Хоёр ба түүнээс дээш хелицэн шиг бутэц агуулаг анэлдхүүдийг олон төв хелиецний молекул гээн. Ийм олон төв хелицений хувьд зэргэлтийн хирал чанарыг тооцвол олон стерео изомертэй. Тухайлбал,

A.3 1,2-дибромбензолын никель-катализаторын тримержуулалт нэгийн нэгдлийн нэг молекул (P)-F-ийг яг урвалд оруулж олон төв хелицэн G (C_{66}H_{36})-г гаргаг. Урвалын явцад стерео изомерүүдийн хоорондын хувирал явдаггүй бөгөөд үүсэн G нэгдлийн боломжит бух стереоизомеруудийг давхардуулалтуураа тогтооно уу. Дээрх жишээн дэх нэгдлийн дугаарлалтыг ашиглан хиралын чанарыг нь нэг изомер бүрэн дүрсэлж бусад идэмүүдийг нь уг тогтоогоо уу. Жишээлбэл, E нэгдлийн стерео изомеруудийг (1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), ба (M, P, M) гэж тэмдээлээ болно.

Рутини (Ru*) катализатор ашиglasан жишээ синтезийг дор узуулэв.

B.1 Завсын бутээгдэхүүн I -ийн бүтэц (стереохими шаардлагуу)ийг 3pt дурсэлэнэ уу.
Б.2 Оптик идэвхтэй J нэгдлээс ижил дараалалтай урвалын схемээр оптик идэвхтэй суманений уламжлал болох K нэгдэл үүсдэг. Энэ процессын дунд J нэгдлийн стерео тэвүүд хувирдаг. K нэгдлийн тохирох стерео бүтцийг дүрсэлнэ үү.
Динамиқ органик нэгдлүүд ба тэдгээрийн хирал нчаар

A хэсэг

A.1 (9 pt)

<table>
<thead>
<tr>
<th>A (3 pt)</th>
<th>B (3 pt)</th>
<th>C (3 pt)</th>
</tr>
</thead>
</table>

A.2 (3 pt)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

МНГ-3 С-8 А-1
Монгол (Монгол)
A.3 (7 pt)
В хэсэг

В.1 (3 pt)

В.2 (4 pt)
Please return this cover sheet together with all the related question sheets.
Likes and Dislikes of Capsule

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
</tbody>
</table>

Score

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds 1 and 2 were synthesized as U-shaped molecules with different sizes. Compound 3 was prepared as a comparison of 1 and the encapsulation behavior of these compounds was investigated.
The synthetic route to 2 is shown below. The elemental composition of compound 9: C; 40.49%, H; 1.70%, and O; 17.98% by mass.
A.1 **Draw** the structures of 4-9; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of p-methoxybenzyl group shown in the scheme above.

In the mass spectrum of 1, the ion peak corresponding to its dimer (1₂) was clearly observed, whereas an ion peak for 3₂ was not observed in the spectrum of 3. In the ¹H NMR spectra of a solution of 1₂, all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3. These data indicate that hydrogen bonds are formed between the NH moieties of 1 and atoms X of another molecule of 1 to form the dimeric capsule.

A.2 **Circle** all the appropriate atom(s) X in 1.

A.3 **Give** the number of the hydrogen bonds in the dimeric capsule (1₂).
The dimeric capsule of 1 (1$_2$) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

$$Z + 1_2 \rightarrow Z@1_2$$ \hspace{1cm} (1)

The equilibrium constant of the encapsulation of Z into 1$_2$ is given as below:

$$K_a = \frac{[Z@1_2]}{[Z][1_2]}$$ \hspace{1cm} (2)

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1$_2$ in C$_6$D$_6$ gave different signals in the 1H NMR spectra before and after addition of CH$_4$.

Compound 2 also forms a rigid and larger dimeric capsule (2$_2$). The 1H NMR spectrum of 2$_2$ was measured in C$_6$D$_6$, C$_6$D$_5$F, and a C$_6$D$_6$/C$_6$D$_5$F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H$_a$ proton of 2 in the above solvents are summarized below, and no other signals from the H$_a$ in 2, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

<table>
<thead>
<tr>
<th>solvent</th>
<th>δ (ppm) of H$_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_6$D$_6$</td>
<td>4.60</td>
</tr>
<tr>
<td>C$_6$D$_5$F</td>
<td>4.71</td>
</tr>
<tr>
<td>C$_6$D$_6$/C$_6$D$_5$F</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 **Determine** the number of C$_6$D$_6$ and C$_6$D$_5$F molecules encapsulated in 2$_2$ giving each H$_a$ signal.
1H NMR measurements in C$_6$D$_6$ revealed that 2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@2] denotes a species containing one or more solvent molecules.

$$K_a = \frac{[Z@2]}{[Z][\text{solvent} @2]} \quad (3)$$

Similarly, the K_a values of CH$_4$ and 1 given as eq (2) at various temperatures in C$_6$D$_6$ were also determined by 1H NMR measurements. The plots of the two association constants (as ln K_a vs 1/T) are shown below.

No C$_6$D$_6$ molecule is encapsulated in 1. In line II, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line II is (3). Therefore, line I corresponds to (4), and line II corresponds to (5).

A.5 Choose the correct options in gaps (1)–(5) in the following paragraph from A 3pt and B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(2)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(3)</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>(4)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1 and CH$_4$</td>
<td>2 and AdA</td>
</tr>
</tbody>
</table>
Капсулын дуртай болон дургүй зүйлс

<table>
<thead>
<tr>
<th>Нийт онооны 10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асуулт</td>
</tr>
<tr>
<td>Оноо</td>
</tr>
<tr>
<td>Унэлгээ</td>
</tr>
</tbody>
</table>

Сайн хуухдуд ингэхгүй л байх, гэхдээ та теннисний бөмбөгийг зураасны дагуу задалбал U хэлбэр-тэй хоёр хэсэгт хуваагдана.

Дээрх санаанд ундэслэн зэргээл нөөр нөөр хэмжээтэй U хэлбэрийн молекулууд болов 1 ба 2 нэгдлүүдийг нийлэж буулган гарган авчэ. 3 бодисыг 1 бодистой харьцуулахын тулд гарган авсан бөгөөд эдгээр нэгдлүүдийн капсулын уусгэх шинж чанарыг харьцуулах судлав.
2 нэгдлийг нийлэгжүүлэх схемийг доор харуулав. 9 бодисын элементийн найрлага массын хувирг C 40.49%, H 1.70%, O 17.98% байдаг.
A.1 4-9 бодисуудын бүтцийг зурна уу; стереохимийг зурахгүй орхиж болно. 13pt
Дээрх схемд харуулсан пара-метоксибензил бүлгийн бүтцийг бүхэлд нь зурахын оронд "PMB" товчлолыг ашиглана.

\[
\begin{align*}
\text{Твинт-уудын бүтцийн альгат бүхэлд нь зурахгүй орхиж болно.}
\end{align*}
\]
1 бодисын масс спектр түүний димер (I₂)-т харгалзах ионы пик тод ажиглагдсан бол 3 бодисын спектр 3₂-ын ионы пик ажиглалаагүй. 1₂ уусмалын ¹H ЦСР спектр 1 бодист байх бух NH бүлгийн протонууд эквивалент хэмжээтэй ажиглагдсан ба химийн шилжилт нь 3 бодисын NH протоныхоос эрс ялгаатай байна. Эдгээр өгөгдлийн аргууд харахад 1 бодисын нэг молекул нь 1 бодисын өөр нэг молекул нь X атомтай устөрөгчийн холбоогор димер капсул үүсгэдэг нь харагдана.

A.2 1 бодисын тохирох бүх X атом(ууд)-ыг дугуйлна уу. 2pt

A.3 Димер капсул 1₂-д хэдэн ширхэг устөрөгчийн холбоо байх вэ? 2pt
Димер капсул 1 (1₂) нь тохирох жижиг молекул Z-ийг багтаах дотоод зайд. Энэ узэгдлийг дараах тэгштэлээр илэрхийлэв:

\[Z + 1₂ \rightarrow Z@1₂ \]
(1)

Z-ийг 1₂ капсул дотор багтаах тэнцвэрийн тогтмол дараах байдлаар өгөгджээ:

\[K_a = \frac{[Z@1₂]}{[Z][1₂]} \]
(2)

Молекулыг капсулд багтаж байгааг ЦСР спектроскопоор хянах боломжтой. Жишээлбэл, C₆D₆ дахь 1₂ нь CH₄ нэмэхээс өмнө ба дараа ¹H ЦСР спектрт өөр өөр сигнал өгдөг.

2 бодис нь уян биш, том хэмжээтэй димер (2₂) капсул үүсгэдгэг. 2₂ бодисын ¹H ЦСР спектрийг C₆D₆, C₆D₅F, C₆D₅/C₆D₅F уусгачуудад хэмжэн бегвед бусад бүх нехцийг тогтмол байлгасан. 2 бодисын дээрх уусгачууд дахь H₃ протоны химийн шилжилтүүг дор тоймлон харуулав, доор жагсаанын өөрөөр H₃ протоны сигнал илрээгүй. Капсулд дотор боломжит хамгийн их тооны уусгачийн молекулаар дүүргэдэж, сигнал бүр нэг уусгачид харгалзана гэж үзнэ.

<table>
<thead>
<tr>
<th>уусгач</th>
<th>H₃-H δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆D₆</td>
<td>4.60</td>
</tr>
<tr>
<td>C₆D₅F</td>
<td>4.71</td>
</tr>
<tr>
<td>C₆D₆ / C₆D₅F</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 2₂ капсулын H₃ сигналыг багтаасан C₆D₆ ба C₆D₅F молекулуудын тоог Зөр тодорхойлнооу.
НЦР хэмжилтэйг C₆D₆-д уусан хийсэнээр 2₃ нь 1-адамантан карбон хүчил (AdA)-ийн нэг молекул-тай харицган үйлчилгээг тогтоосон бөгөөд доор илэрхийлсэн ассоциацийн тогтмол (K_a)-ийг янз бүрийн температуур тодорхойлсон болно. [solvent@2₃] нь нэг буюу хэд хэдэн уусгчийн молекул агуулсан байгааға илэрхийлнэ.

\[K_a = \frac{[Z@2₃]}{[Z][solvent@2₃]} \]

Унтэй адиллаар СН₄ ба 1₂ бодисын C₆D₆-д ¹Н-ЦР хэмжилтээр K_a утуудыг янз бүрийн температуур тодорхойлсон тэгшитгэл (2)-д угсэн. Хоёр ассоциацийн тогтмолыг (ln K_a-ын 1 / T-ээс хамаарах хамаарал) доор харуулав.

1₂ капсул C₆D₆ молекул ороогүй. II шугамны энтропийн өөрчлөлт (ΔS) нь (1) ба энтальпийн өөрчлөлт (ΔH) нь (2). II шугамны капсулилжих хөдөлгөгч хук нь (3) болохыг илэрхийлнэ. Тиймээс, I шугам (4), II шугам (5)-тай харгалзана.

A.5

Дээрх мэдээлэл дэх (1) - (5) хүртэлх цифр тохиoloх өгөгдлийг дараах хуснэг-түний A ба B баганаас сонгоно уу.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>эрэг</td>
<td>серег</td>
</tr>
<tr>
<td>2</td>
<td>эрэг</td>
<td>серег</td>
</tr>
<tr>
<td>3</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>4</td>
<td>1₂ ба CH₄</td>
<td>2₂ ба AdA</td>
</tr>
<tr>
<td>5</td>
<td>1₂ ба CH₄</td>
<td>2₂ ба AdA</td>
</tr>
</tbody>
</table>
Капсулын дуртай болон дүрүүгүй зүйлс

<table>
<thead>
<tr>
<th>Номер</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>5</td>
<td>(3 pt)</td>
</tr>
<tr>
<td>6</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>7</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>8</td>
<td>(2 pt)</td>
</tr>
<tr>
<td>9</td>
<td>(2 pt)</td>
</tr>
</tbody>
</table>
A.2 (2 pt)

![Chemical Structure Diagram]

A.3 (2 pt)

A.4 (3 pt)

<table>
<thead>
<tr>
<th>Н³-ийн δ (ppm)</th>
<th>C₆D₆-н тоо</th>
<th>C₆D₅F-н тоо</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.60 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.71 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.82 ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5 (3 pt)

(1) : (2) : (3) :

(4) : (5) :