Please return this cover sheet together with all the related question sheets.
International Chemistry Olympiad 2021 Japan
53rd IChO2021 Japan
25th July - 2nd August, 2021
https://www.icho2021.org

Chemistry! It's Cool!
General Instruction

• You are allowed to use only pen to write the answer.
• Your calculator must be non-programmable.
• This examination has 9 problems.
• You can solve the problems in any order.
• You will have 5 hours to solve all problems.
• You can begin working only after the START command is given.
• All results must be written in the appropriate answer boxes with pen on the answer sheets. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
• Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
• The invigilator will announce a 30-minute warning before the STOP command.
• You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your examination.
• The official English version of this examination is available on request only for clarification.
• You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

<table>
<thead>
<tr>
<th>Title</th>
<th>Total Score</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hydrogen at a Metal Surface</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2 Isotope Time Capsule</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3 Lambert–Beer Law?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4 The Redox Chemistry of Zinc</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5 Mysterious Silicon</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6 The Solid-State Chemistry of Transition Metals</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7 Playing with Non-benzenoid Aromaticity</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8 Dynamic Organic Molecules and Their Chirality</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9 Likes and Dislikes of Capsules</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Physical Constants and Equations

Constants

<table>
<thead>
<tr>
<th>Equation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>(c = 2.99792458 \times 10^8 \text{ m s}^{-1})</td>
</tr>
<tr>
<td>Planck constant</td>
<td>(h = 6.62607015 \times 10^{-34} \text{ J s})</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>(e = 1.602176634 \times 10^{-19} \text{ C})</td>
</tr>
<tr>
<td>Electron mass</td>
<td>(m_e = 9.10938370 \times 10^{-31} \text{ kg})</td>
</tr>
<tr>
<td>Electric constant (permittivity of vacuum)</td>
<td>(\varepsilon_0 = 8.85418781 \times 10^{-12} \text{ F m}^{-1})</td>
</tr>
<tr>
<td>Avogadro constant</td>
<td>(N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1})</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>(k_B = 1.380649 \times 10^{-2} \text{ J K}^{-1})</td>
</tr>
<tr>
<td>Faraday constant</td>
<td>(F = N_A \times e = 9.64853321233100184 \times 10^{4} \text{ C mol}^{-1})</td>
</tr>
<tr>
<td>Gas constant</td>
<td>(R = N_A \times k_B = 8.31446261815324 \text{ J K}^{-1} \text{ mol}^{-1})</td>
</tr>
<tr>
<td>Unified atomic mass unit</td>
<td>(u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg})</td>
</tr>
<tr>
<td>Standard pressure</td>
<td>(p = 1 \text{ bar} = 10^5 \text{ Pa})</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>(p_{\text{atm}} = 1.01325 \times 10^5 \text{ Pa})</td>
</tr>
<tr>
<td>Zero degree Celsius</td>
<td>(0 ^\circ \text{C} = 273.15 \text{K})</td>
</tr>
<tr>
<td>Ångstrom</td>
<td>(1 \text{ Å} = 10^{-10} \text{ m})</td>
</tr>
<tr>
<td>Picometer</td>
<td>(1 \text{ pm} = 10^{-12} \text{ m})</td>
</tr>
<tr>
<td>Electronvolt</td>
<td>(1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J})</td>
</tr>
<tr>
<td>Part-per-million</td>
<td>(1 \text{ ppm} = 10^{-6})</td>
</tr>
<tr>
<td>Part-per-billion</td>
<td>(1 \text{ ppb} = 10^{-9})</td>
</tr>
<tr>
<td>Part-per-trillion</td>
<td>(1 \text{ ppt} = 10^{-12})</td>
</tr>
<tr>
<td>Pi</td>
<td>(\pi = 3.141592653589793)</td>
</tr>
<tr>
<td>The base of the natural logarithm (Euler’s number)</td>
<td>(e = 2.718281828459045)</td>
</tr>
</tbody>
</table>
Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PV = nRT$</td>
<td>The ideal gas law, where P is the pressure, V is the volume, n is the amount of substance, T is the absolute temperature of ideal gas.</td>
</tr>
<tr>
<td>$F = k_e \frac{q_1 q_2}{r^2}$</td>
<td>Coulomb's law, where F is the electrostatic force, $k_e (\approx 9.0 \times 10^9 \text{ N m}^2 \text{ C}^{-2})$ is Coulomb's constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance between the charges.</td>
</tr>
<tr>
<td>$\Delta U = q + w$</td>
<td>The first law of thermodynamics, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.</td>
</tr>
<tr>
<td>$H = U + PV$</td>
<td>Enthalpy H</td>
</tr>
<tr>
<td>$S = k_B \ln W$</td>
<td>Entropy based on Boltzmann's principle, where W is the number of microstates.</td>
</tr>
<tr>
<td>$\Delta S = \frac{q_{\text{rev}}}{T}$</td>
<td>The change of entropy, where q_{rev} is the heat for the reversible process.</td>
</tr>
<tr>
<td>$G = H - TS$</td>
<td>Gibbs free energy G, where $\Delta r G^\circ = -RT \ln K = -zFE^\circ$</td>
</tr>
<tr>
<td>$\Delta r G^\circ = -RT \ln Q$</td>
<td>For a reaction $aA + bB \rightleftharpoons cC + dD$, $Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}$, where $[A]$ is the concentration of A.</td>
</tr>
</tbody>
</table>
| Heat change Δq | $\Delta q = n c_m \Delta T$
|---|---|---|---|
| Nernst equation for redox reaction | $E = E^\circ + \frac{RT}{zF} \ln \frac{C_{\text{ox}}}{C_{\text{red}}}$
|---|---|---|---|
| Arrhenius equation | $k = A \exp \left(-\frac{E_a}{RT} \right)$
|---|---|---|---|
| Lambert–Beer equation | $A = \varepsilon l c$
|---|---|---|---|
| Henderson–Hasselbalch equation | For an equilibrium
|---|---|---|---|
| Energy of a photon | $E = h \nu = \frac{h}{\lambda}$
|---|---|---|---|
| The sum of a geometric series | When $x \neq 1$,
|---|---|---|---|
| Approximation equation that can be used to solve problems | When $x \ll 1$,
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Atomic Number</td>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>H</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>He</td>
<td>2</td>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>Li</td>
<td>3</td>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>Be</td>
<td>4</td>
<td>Be</td>
<td>Beryllium</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>B</td>
<td>Boron</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>N</td>
<td>7</td>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>F</td>
<td>Fluorine</td>
</tr>
<tr>
<td>Ne</td>
<td>10</td>
<td>Ne</td>
<td>Neon</td>
</tr>
<tr>
<td>Na</td>
<td>11</td>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Al</td>
<td>13</td>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Si</td>
<td>14</td>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>P</td>
<td>15</td>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>S</td>
<td>16</td>
<td>S</td>
<td>Sulfur</td>
</tr>
<tr>
<td>Cl</td>
<td>17</td>
<td>Cl</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Ar</td>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>K</td>
<td>19</td>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Sc</td>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>V</td>
<td>23</td>
<td>V</td>
<td>Vanadium</td>
</tr>
<tr>
<td>Cr</td>
<td>24</td>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>Ga</td>
<td>Gallium</td>
</tr>
<tr>
<td>Ge</td>
<td>32</td>
<td>Ge</td>
<td>Germanium</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Se</td>
<td>34</td>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>Br</td>
<td>Bromine</td>
</tr>
<tr>
<td>Kr</td>
<td>36</td>
<td>Kr</td>
<td>Krypton</td>
</tr>
<tr>
<td>Rb</td>
<td>37</td>
<td>Rb</td>
<td>Rubidium</td>
</tr>
<tr>
<td>Sr</td>
<td>38</td>
<td>Sr</td>
<td>Strontium</td>
</tr>
<tr>
<td>Y</td>
<td>39</td>
<td>Y</td>
<td>Yttrium</td>
</tr>
<tr>
<td>Zr</td>
<td>40</td>
<td>Zr</td>
<td>Zirconium</td>
</tr>
<tr>
<td>Nb</td>
<td>41</td>
<td>Nb</td>
<td>Niobium</td>
</tr>
<tr>
<td>Mo</td>
<td>42</td>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>Tc</td>
<td>43</td>
<td>Tc</td>
<td>Technetium</td>
</tr>
<tr>
<td>Ru</td>
<td>44</td>
<td>Ru</td>
<td>Ruthenium</td>
</tr>
<tr>
<td>Rh</td>
<td>45</td>
<td>Rh</td>
<td>Rhodium</td>
</tr>
<tr>
<td>Pd</td>
<td>46</td>
<td>Pd</td>
<td>Palladium</td>
</tr>
<tr>
<td>Ag</td>
<td>47</td>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>Cd</td>
<td>48</td>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>In</td>
<td>49</td>
<td>In</td>
<td>Indium</td>
</tr>
<tr>
<td>Sn</td>
<td>50</td>
<td>Sn</td>
<td>Tin</td>
</tr>
<tr>
<td>Sb</td>
<td>51</td>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>Te</td>
<td>52</td>
<td>Te</td>
<td>Tellurium</td>
</tr>
<tr>
<td>I</td>
<td>53</td>
<td>I</td>
<td>Iodine</td>
</tr>
<tr>
<td>Xe</td>
<td>54</td>
<td>Xe</td>
<td>Xenon</td>
</tr>
<tr>
<td>Cs</td>
<td>55</td>
<td>Cs</td>
<td>Cesium</td>
</tr>
<tr>
<td>Ba</td>
<td>56</td>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>La</td>
<td>57</td>
<td>La</td>
<td>Lanthanum</td>
</tr>
<tr>
<td>Lu</td>
<td>57</td>
<td>Lu</td>
<td>Lutetium</td>
</tr>
<tr>
<td>Ac</td>
<td>57</td>
<td>Ac</td>
<td>Actinium</td>
</tr>
<tr>
<td>Th</td>
<td>57</td>
<td>Th</td>
<td>Thorium</td>
</tr>
<tr>
<td>Pa</td>
<td>58</td>
<td>Pa</td>
<td>Protactinium</td>
</tr>
<tr>
<td>U</td>
<td>59</td>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>Np</td>
<td>60</td>
<td>Np</td>
<td>Neptunium</td>
</tr>
<tr>
<td>Pu</td>
<td>61</td>
<td>Pu</td>
<td>Plutonium</td>
</tr>
<tr>
<td>Am</td>
<td>62</td>
<td>Am</td>
<td>Americium</td>
</tr>
<tr>
<td>Cm</td>
<td>63</td>
<td>Cm</td>
<td>Curium</td>
</tr>
<tr>
<td>Bk</td>
<td>64</td>
<td>Bk</td>
<td>Berkelium</td>
</tr>
<tr>
<td>Cf</td>
<td>65</td>
<td>Cf</td>
<td>Californium</td>
</tr>
<tr>
<td>Es</td>
<td>65</td>
<td>Es</td>
<td>Einsteinium</td>
</tr>
<tr>
<td>Fm</td>
<td>67</td>
<td>Fm</td>
<td>Fermium</td>
</tr>
<tr>
<td>Md</td>
<td>68</td>
<td>Md</td>
<td>Mendelevium</td>
</tr>
<tr>
<td>No</td>
<td>69</td>
<td>No</td>
<td>Nobelium</td>
</tr>
<tr>
<td>Lr</td>
<td>70</td>
<td>Lr</td>
<td>Lawrencium</td>
</tr>
</tbody>
</table>
1H NMR Chemical Shifts

$\Delta \delta$ for one alkyl group-substitution: ca. +0.4 ppm
Международная химическая олимпиада 2021 Япония
53 МХО 2021 Япония
25 июля – 2 августа 2021
https://www.icho2021.org
Общие указания

- Записывать ответы можно только ручкой.
- Можно использовать только непрограммируемый калькулятор.
- Комплект состоит из 9 задач.
- Решать задачи можно в любом порядке.
- Вам дается 5 часов на решение всех задач.
- Начинайте работу только после команды СТАРТ.
- Все результаты должны быть записаны ручкой в соответствующих полях листов ответа. Для черновиков используйте оборотную сторону листов с заданиями. Помните, что ответы, записанные за пределами отведенных для них мест, не будут оценены.
- Записывайте все вычисления. Полный балл за расчетные вопросы дается только, если правильный ответ подтвержден расчетами.
- Официальный наблюдатель предупредит Вас за 30 минут до окончания тура.
- Когда прозвучит команда СТОП, Вы должны прекратить работу. Невыполнение этого требования приведет к дисквалификации.
- Если Вам что-то неясно в переводе, Вы можете попросить официальную английскую версию заданий.
- Нельзя покидать свое рабочее место без разрешения. Если Вам потребуется помощь (сломался калькулятор, нужно в туалет и т.п.), поднимите руку и подождите, пока к Вам не подойдет официальный наблюдатель.

УДАЧИ!

Задачи и баллы

<table>
<thead>
<tr>
<th>Название</th>
<th>Общие баллы</th>
<th>Процент</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Водород на поверхности металла</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>2 Изотопы в природе</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>3 Закон Бугера-Ламберта-Бера?</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>4 Редокс-химия цинка</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>5 Загадочный кремний</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>6 Химия твердых соединений переходных металлов</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>7 Ароматичность небензоидного типа</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>8 Динамические органические молекулы и их хиральность</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>9 Что капсулы любят, а что нет</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Всего</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Физические константы, единицы и уравнения

Константы и единицы

<table>
<thead>
<tr>
<th>Физическая величина</th>
<th>Условие</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость света в вакууме</td>
<td>$c = 2.99792458 \times 10^8$ м с$^{-1}$</td>
</tr>
<tr>
<td>Постоянная Планка</td>
<td>$h = 6.62607015 \times 10^{-34}$ Дж с</td>
</tr>
<tr>
<td>Элементарный заряд</td>
<td>$e = 1.602176634 \times 10^{-19}$ Кл</td>
</tr>
<tr>
<td>Масса электрона</td>
<td>$m_e = 9.10938370 \times 10^{-31}$ кг</td>
</tr>
<tr>
<td>Диэлектрическая константа (диэлектрическая проницаемость вакуума)</td>
<td>$\varepsilon_0 = 8.85418781 \times 10^{-12}$ Ф м$^{-1}$</td>
</tr>
<tr>
<td>Постоянная Авогадро</td>
<td>$N_A = 6.02214076 \times 10^{21}$ моль$^{-1}$</td>
</tr>
<tr>
<td>Постоянная Больцмана</td>
<td>$k_B = 1.380649 \times 10^{-23}$ Дж К$^{-1}$</td>
</tr>
<tr>
<td>Постоянная Фарадея</td>
<td>$F = N_A \times e = 9.6485321233100184 \times 10^4$ Кл моль$^{-1}$</td>
</tr>
<tr>
<td>Универсальная газовая постоянная</td>
<td>$R = N_A \times k_B = 8.31446261815324$ Дж К$^{-1}$ моль$^{-1}$ = $8.2057366081 \times 10^{-2}$ л атм К$^{-1}$ моль$^{-1}$</td>
</tr>
<tr>
<td>Атомная единица массы</td>
<td>$u = 1$ Да = $1.66053907 \times 10^{-27}$ кг</td>
</tr>
<tr>
<td>Стандартное давление</td>
<td>$p = 1$ бар = 10^5 Па</td>
</tr>
<tr>
<td>Нормальное атмосферное давление</td>
<td>$p_{атм} = 1.01325 \times 10^5$ Па</td>
</tr>
<tr>
<td>Ноль градусов Цельсия</td>
<td>0°C = 273.15 K</td>
</tr>
<tr>
<td>Ангстрем</td>
<td>1 Å = 10^{-10} м</td>
</tr>
<tr>
<td>Пикометр</td>
<td>1 пм = 10^{-12} м</td>
</tr>
<tr>
<td>Электронвольт</td>
<td>1 эВ = $1.602176634 \times 10^{-19}$ Дж</td>
</tr>
<tr>
<td>Миллионная доля</td>
<td>1 ppm (1 м.д.) = 10^{-6}</td>
</tr>
<tr>
<td>Миллиардная доля</td>
<td>1 ppb = 10^{-9}</td>
</tr>
<tr>
<td>Триллионная доля</td>
<td>1 ppt = 10^{-12}</td>
</tr>
<tr>
<td>Число “пи”</td>
<td>$\pi = 3.141592653589793$</td>
</tr>
<tr>
<td>Основание натуральных логарифмов (число Эйлера)</td>
<td>$e = 2.718281828459045$</td>
</tr>
</tbody>
</table>
Уравнения

<table>
<thead>
<tr>
<th>Уравнение идеального газа</th>
<th>(PV = nRT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Закон Кулона</td>
<td>(F = k_e \frac{q_1 q_2}{r^2})</td>
</tr>
<tr>
<td>Первый закон термодинамики</td>
<td>(\Delta U = q + w)</td>
</tr>
<tr>
<td>Энталпия (H)</td>
<td>(H = U + PV)</td>
</tr>
<tr>
<td>Формула Больцмана для энтропии (S)</td>
<td>(S = k_B \ln W)</td>
</tr>
<tr>
<td>Изменение энтропии (\Delta S)</td>
<td>(\Delta S = \frac{\Delta H_{обр}}{T})</td>
</tr>
<tr>
<td>Энергия Гиббса (G)</td>
<td>(G = H - TS)</td>
</tr>
<tr>
<td>Реакционное отношение (Q)</td>
<td>(\Delta G = \Delta G^\circ + RT \ln Q)</td>
</tr>
</tbody>
</table>

где \(P \) - давление, \(V \) - объем, \(n \) - число молей, \(T \) - абсолютная температура идеального газа.

где \(F \) - сила электростатического взаимодействия, \(k_e (\approx 9.0 \times 10^9 \text{ Н м}^2\text{ Кл}^{-2}) \) - постоянная Кулона, \(q_1 \) и \(q_2 \) - величины зарядов, \(r \) - расстояние между зарядами.

где \(\Delta U \) - изменение внутренней энергии, \(q \) - теплота, \(w \) - работа.

где \(W \) - число микросостояний.

где \(\Delta H_{обр} \) - теплота обратимого процесса.

где \(K \) - константа равновесия, \(z \) - число электронов, \(E^\circ \) - стандартная эдс.

где \(A \) - молярная концентрация A.
<table>
<thead>
<tr>
<th>Энергия фотона</th>
<th>$E = h\nu = \frac{h\nu}{\lambda}$, где ν - частота, λ - длина волны света.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сумма геометрической прогрессии</td>
<td>При $x \neq 1$, $1 + x + x^2 + \ldots + x^n = \sum_{i=0}^{n} x^i = \frac{1 - x^{n+1}}{1 - x}$</td>
</tr>
<tr>
<td>Приближенные формулы</td>
<td>При $x \ll 1$, $\frac{1}{1-x} \approx 1 + x$</td>
</tr>
<tr>
<td>Теплота Δq</td>
<td>$\Delta q = n c_m \Delta T$, где c_m - молярная теплоемкость, не зависящая от температуры.</td>
</tr>
<tr>
<td>Уравнение Нернста для ОВР</td>
<td>$E = E^\circ + \frac{RT}{zF} \ln \frac{C_{\text{ox}}}{C_{\text{red}}}$, где C_{ox} - концентрация окисленной формы, C_{red} - концентрация восстановленной формы.</td>
</tr>
<tr>
<td>Уравнение Аррениуса</td>
<td>$k = A \exp \left(- \frac{E_a}{RT} \right)$, где k - константа скорости, A - предэкспоненциальный множитель, E_a - энергия активации.</td>
</tr>
<tr>
<td>Уравнение Бугера-Ламберта-Бера</td>
<td>$A = \varepsilon l c$, где A - поглощение, ε - молярный коэффициент поглощения, l - длина оптического пути, c - молярная концентрация вещества в растворе.</td>
</tr>
<tr>
<td>Уравнение Гендерсона-Хассельбальха</td>
<td>Для равновесия [\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^-], с константой кислотности K_a, $\text{pH} = \text{p}K_a + \log \left(\frac{[\text{A}^-]}{[\text{HA}]} \right)$</td>
</tr>
</tbody>
</table>

Энергия фотона $E = h\nu = \frac{h\nu}{\lambda}$, где ν - частота, λ - длина волны света.
Периодическая система

<table>
<thead>
<tr>
<th>№</th>
<th>Элемент</th>
<th>Атомный номер</th>
<th>Символ</th>
<th>Систематическое название</th>
<th>Русское название</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1</td>
<td>H</td>
<td>Hydrogen</td>
<td>Гидrogen</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>2</td>
<td>He</td>
<td>Helium</td>
<td>Гелий</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>3</td>
<td>Li</td>
<td>Lithium</td>
<td>Литий</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>4</td>
<td>Be</td>
<td>Beryllium</td>
<td>Берилий</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>5</td>
<td>B</td>
<td>Boron</td>
<td>Бор</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>6</td>
<td>C</td>
<td>Carbon</td>
<td>Карбон</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>Nitrogen</td>
<td>Нитrogen</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>8</td>
<td>O</td>
<td>Oxygen</td>
<td>Оксigen</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>9</td>
<td>F</td>
<td>Fluorine</td>
<td>Флуорин</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>10</td>
<td>Ne</td>
<td>Neon</td>
<td>Неон</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>11</td>
<td>Na</td>
<td>Sodium</td>
<td>Натрий</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>12</td>
<td>Mg</td>
<td>Magnesium</td>
<td>Магний</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>13</td>
<td>Al</td>
<td>Aluminium</td>
<td>Алюминий</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>14</td>
<td>Si</td>
<td>Silicon</td>
<td>Силикон</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>15</td>
<td>P</td>
<td>Phosphorus</td>
<td>Фосфор</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>16</td>
<td>S</td>
<td>Sulfur</td>
<td>Сульфур</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>17</td>
<td>Cl</td>
<td>Chlorine</td>
<td>Клорин</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
<td>Аргон</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>19</td>
<td>K</td>
<td>Potassium</td>
<td>Потасий</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>20</td>
<td>Ca</td>
<td>Calcium</td>
<td>Кальций</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
<td>Скандий</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>22</td>
<td>Ti</td>
<td>Titanium</td>
<td>Титан</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>23</td>
<td>V</td>
<td>Vanadium</td>
<td>Ванадий</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>24</td>
<td>Cr</td>
<td>Chromium</td>
<td>Хром</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>25</td>
<td>Mn</td>
<td>Manganese</td>
<td>Марганец</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>26</td>
<td>Fe</td>
<td>Iron</td>
<td>Железо</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>27</td>
<td>Co</td>
<td>Cobalt</td>
<td>Кобальт</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
<td>Никель</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>29</td>
<td>Cu</td>
<td>Copper</td>
<td>Купер</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>30</td>
<td>Zn</td>
<td>Zinc</td>
<td>Цинк</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>31</td>
<td>Ga</td>
<td>Gallium</td>
<td>Галлий</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>32</td>
<td>Ge</td>
<td>Germanium</td>
<td>Германий</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>33</td>
<td>As</td>
<td>Arsenic</td>
<td>Аrsenic</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>34</td>
<td>Se</td>
<td>Selenium</td>
<td>Селен</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>35</td>
<td>Br</td>
<td>Bromine</td>
<td>Бромин</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>36</td>
<td>Kr</td>
<td>Krypton</td>
<td>Криптон</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>37</td>
<td>Rb</td>
<td>Rubidium</td>
<td>Рубидий</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>38</td>
<td>Sr</td>
<td>Strontium</td>
<td>Стронций</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>39</td>
<td>Y</td>
<td>Yttrium</td>
<td>Йтрий</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>40</td>
<td>Zr</td>
<td>Zirconium</td>
<td>Цирконий</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>41</td>
<td>Nb</td>
<td>Niobium</td>
<td>Ниобий</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>42</td>
<td>Mo</td>
<td>Molybdenum</td>
<td>Молибден</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td>43</td>
<td>Tc</td>
<td>Technetium</td>
<td>Технеций</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>44</td>
<td>Ru</td>
<td>Ruthenium</td>
<td>Рутений</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>45</td>
<td>Rh</td>
<td>Rhodium</td>
<td>Родий</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>46</td>
<td>Pd</td>
<td>Palladium</td>
<td>Палладий</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>47</td>
<td>Ag</td>
<td>Silver</td>
<td>Серебро</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>48</td>
<td>Cd</td>
<td>Cadmium</td>
<td>Кадмий</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>49</td>
<td>In</td>
<td>Indium</td>
<td>Индиум</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>50</td>
<td>Sn</td>
<td>Tin</td>
<td>Тин</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>51</td>
<td>Sb</td>
<td>Antimony</td>
<td>Антимон</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>52</td>
<td>Te</td>
<td>Tellurium</td>
<td>Теллур</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>53</td>
<td>I</td>
<td>Iodine</td>
<td>Йод</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>54</td>
<td>Xe</td>
<td>Xenon</td>
<td>Цезий</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>55</td>
<td>Cs</td>
<td>Cesium</td>
<td>Цезий</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>56</td>
<td>Ba</td>
<td>Barium</td>
<td>Барий</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>57</td>
<td>La</td>
<td>Lanthan</td>
<td>Лантан</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>58</td>
<td>Ce</td>
<td>Cerium</td>
<td>Церий</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>59</td>
<td>Pr</td>
<td>Praseodymium</td>
<td>Прасодимий</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>60</td>
<td>Nd</td>
<td>Neodymium</td>
<td>Неодимий</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>61</td>
<td>Pm</td>
<td>Promethium</td>
<td>Прометий</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>62</td>
<td>Sm</td>
<td>Samarium</td>
<td>Самирамий</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>63</td>
<td>Eu</td>
<td>Europium</td>
<td>Европий</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>64</td>
<td>Gd</td>
<td>Gadolinium</td>
<td>Гадолиний</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>65</td>
<td>Tb</td>
<td>Terbium</td>
<td>Тербий</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>66</td>
<td>Dy</td>
<td>Dysprosium</td>
<td>Диспрозий</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>67</td>
<td>Ho</td>
<td>Holmium</td>
<td>Гольмий</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>68</td>
<td>Er</td>
<td>Erbium</td>
<td>Эрбиум</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>69</td>
<td>Tm</td>
<td>Thulium</td>
<td>Тулий</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>70</td>
<td>Yb</td>
<td>Ytterbium</td>
<td>Ютербиум</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>71</td>
<td>Lu</td>
<td>Lutetium</td>
<td>Лутетий</td>
</tr>
</tbody>
</table>

Русский - Молдова (Молдова)
1Н ЯМР химсдвиги

Diagram showing various chemical shifts for different functional groups: R-NH$_2$, R-COO-CH$_3$, R-CO-CH$_3$, Ar-CH$_3$, R$_2$Ar-CH$_3$, Ar-OH, Ar-H, COOH, SO$_4$H$^\text{2-}$, and a scale from 0 to 13 ppm.
Δδ при введении одной алкильной группы: прибл. +0.4 м.д.
Please return this cover sheet together with all the related question sheets.
Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $\text{H}_2(g) \rightarrow 2\text{H}(\text{ad})$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of kJ per mole of H_2. The solid line spacing is 20 kJ mol$^{-1}$, the dashed line spacing is 100 kJ mol$^{-1}$, and the spacing between solid and dashed lines is 80 kJ mol$^{-1}$. The zero-point vibration energy is ignored.
Fig. 1 Definition of variables. Drawing is not in scale.

Fig. 2
A.1 For each of the following items (i)–(iii), select the closest value from A–G. 6pt
(i) The interatomic distance for a gaseous H\textsubscript{2} molecule
(ii) The interatomic distance between metal atoms (\(d\textsubscript{M}\) in Fig. 1)
(iii) The distance of adsorbed H atoms from the surface (\(h\textsubscript{ad}\) in Fig. 1)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.03 nm</td>
<td>B</td>
<td>0.07 nm</td>
</tr>
<tr>
<td>C</td>
<td>0.11 nm</td>
<td>D</td>
<td>0.15 nm</td>
</tr>
<tr>
<td>E</td>
<td>0.19 nm</td>
<td>F</td>
<td>0.23 nm</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0.27 nm</td>
<td></td>
</tr>
</tbody>
</table>

A.2 For each of the following items (i)–(ii), select the closest value from A–H. 4pt
(i) the energy required for the dissociation of gaseous H\textsubscript{2} to gaseous H
[\(\text{H}_2^{(g)} \rightarrow 2\text{H}^{(g)}\)]
(ii) the energy released during the adsorption of a gaseous H\textsubscript{2} [\(\text{H}_2^{(g)} \rightarrow 2\text{H}^{(ad)}\)]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20 kJ mol(^{-1})</td>
<td>B</td>
<td>40 kJ mol(^{-1})</td>
</tr>
<tr>
<td>C</td>
<td>60 kJ mol(^{-1})</td>
<td>D</td>
<td>100 kJ mol(^{-1})</td>
</tr>
<tr>
<td>E</td>
<td>150 kJ mol(^{-1})</td>
<td>F</td>
<td>200 kJ mol(^{-1})</td>
</tr>
<tr>
<td>G</td>
<td>300 kJ mol(^{-1})</td>
<td>H</td>
<td>400 kJ mol(^{-1})</td>
</tr>
</tbody>
</table>
Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). $H(ab)$ represents a hydrogen atom absorbed in the bulk.

\[\frac{H_2(g)}{k_1 \rightarrow 2H(ad)} \]
\[\frac{H(ad)}{k_2 \rightarrow H(ab)} \]

The reaction rates per surface site for adsorption, desorption, and absorption are $r_1 [s^{-1}]$, $r_2 [s^{-1}]$ and $r_3 [s^{-1}]$, respectively. They are expressed as:

\[r_1 = k_1 P_{H_2} (1 - \theta)^2 \]
\[r_2 = k_2 \theta^2 \]
\[r_3 = k_3 \theta \]

where $k_1 [s^{-1} Pa^{-1}]$, $k_2 [s^{-1}]$ and $k_3 [s^{-1}]$ are the reaction rate constants and P_{H_2} is the pressure of H_2. Among the sites available on the surface, $\theta (0 \leq \theta \leq 1)$ is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_1, r_2 \gg r_3$) and that θ remains constant.

B.1 r_3 can be expressed as:

\[r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}} \]

Express C using k_1 and k_2.

5pt
A metal sample with a surface area of \(S = 1.0 \times 10^{-3} \, \text{m}^2 \) was placed in a container (1L = 1.0 \times 10^{-3} \, \text{m}^3) with \(\text{H}_2 \) (\(P_{\text{H}_2} = 1.0 \times 10^2 \, \text{Pa} \)). The density of hydrogen-atom adsorption sites on the surface was \(N = 1.3 \times 10^{18} \, \text{m}^{-2} \). The surface temperature was kept at \(T = 400 \, \text{K} \). As the reaction (1) proceeded, \(P_{\text{H}_2} \) decreased at a constant rate of \(v = 4.0 \times 10^{-4} \, \text{Pa} \, \text{s}^{-1} \). Assume that \(\text{H}_2 \) is an ideal gas and that the volume of the metal sample is negligible.

B.2 Calculate the amount of H atoms in moles absorbed per unit area of the surface per unit time, \(A \) [mol s\(^{-1}\) m\(^{-2}\)].

B.3 At \(T = 400 \, \text{K} \), \(C \) equals \(1.0 \times 10^2 \, \text{Pa}^{-1} \). Calculate the value of \(k_3 \) at 400 K. If you did not obtain the answer to B.2, use \(A = 3.6 \times 10^{-7} \, \text{mol s}^{-1} \, \text{m}^{-2} \).

B.4 At a different \(T \), \(C = 2.5 \times 10^3 \, \text{Pa}^{-1} \) and \(k_3 = 4.8 \times 10^{-2} \, \text{s}^{-1} \) are given. For \(r_3 \) as a function of \(P_{\text{H}_2} \) at this temperature, select the correct plot from (a)–(h).
Водород на поверхности металла

<table>
<thead>
<tr>
<th>Вопрос</th>
<th>A.1</th>
<th>A.2</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>B.4</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очкі</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

Водород - один из потенциальных источников энергии в будущем. Мы рассмотрим процесс поглощения водорода металлом, что может быть использовано в технологиях хранения и транспортировки топлива.

Часть A

Водород поглощается объемом металла через поверхность металла. Рассмотрим процесс адсорбции водорода из газовой фазы на поверхность: \(\text{H}_2(g) \rightarrow 2\text{H(ad)} \). Молекулы водорода \(\text{H}_2 \) диссоциируют на поверхности металла (М) и адсорбируются в виде атомов H (Рис. 1). На рисунке потенциальная энергия \(\text{H}_2 \) зависит от двух переменных: расстояния между ядрами в молекуле, \(d \), и расстояния от молекулы до поверхности, \(z \). Считаем, что молекула ориентирована строго параллельно поверхности, а центр тяжести молекулы в процессе адсорбции всегда находится на вертикальной прямой (пунктир на Рис. 1). На Рис. 2 показаны линии уровня потенциальной энергии в этих координатах. Значения энергии между соседними сплошными линиями различаются на 20 кДж моль\(^{-1}\), а между соседними пунктирными линиями - на 100 кДж моль\(^{-1}\), разность значений между сплошной и ближайшей пунктирной линией равна 80 кДж моль\(^{-1}\). Нулевая колебательная энергия здесь не учитывается.
Рис. 1. Определение координат (рисунок не в реальном масштабе)

Рис. 2.
A.1
Для каждой из приведенных ниже величин (i)–(iii) выберите самое близкое значение из A–G.

<table>
<thead>
<tr>
<th>Вариант</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Равновесное межъядерное расстояние в молекуле H₂ в газовой фазе</td>
<td>A. 0.03 нм</td>
</tr>
<tr>
<td>(ii) Расстояние между центрами атомов металла (d_{M} на Рис. 1)</td>
<td>B. 0.07 нм</td>
</tr>
<tr>
<td>(iii) Равновесное расстояние между атомами H на поверхности (l_{ad} на Рис. 1)</td>
<td>C. 0.11 нм</td>
</tr>
<tr>
<td></td>
<td>D. 0.15 нм</td>
</tr>
<tr>
<td></td>
<td>E. 0.19 нм</td>
</tr>
<tr>
<td></td>
<td>F. 0.23 нм</td>
</tr>
<tr>
<td></td>
<td>G. 0.27 нм</td>
</tr>
</tbody>
</table>

A.2
Для каждой из указанных ниже величин (i)–(ii) выберите самое близкое значение из A–H.

<table>
<thead>
<tr>
<th>Вариант</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) энергия, необходимая для диссоциации молекулы H₂ на атомы H в газовой фазе</td>
<td>A. 20 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>B. 40 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>C. 60 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>D. 100 кДж моль⁻¹</td>
</tr>
<tr>
<td>(ii) энергия, выделяющаяся в результате адсорбции H₂ из газовой фазы</td>
<td>E. 150 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>F. 200 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>G. 300 кДж моль⁻¹</td>
</tr>
<tr>
<td></td>
<td>H. 400 кДж моль⁻¹</td>
</tr>
</tbody>
</table>
Часть B

Адсорбированные на поверхности атомы или мигрируют в объем (абсорбируются), или рекомбинируют и десорбируются обратно в газовую фазу, согласно уравнениям (1a) и (1b). H(ab) обозначает атом водорода в объеме металлической фазы (ab - от absorbed).

\[
\frac{k_1}{k_2} H_2(g) \rightleftharpoons 2H(ad) \quad (1a)
\]

\[
H(ad) \rightarrow H(ab) \quad (1b)
\]

Обозначим скорости реакций в расчете на один активный центр поверхности для адсорбции, десорбции и миграции (абсорбции) \(r_1 \text{[c}^{-1}]\), \(r_2 \text{[c}^{-1}]\) и \(r_3 \text{[c}^{-1}]\), соответственно. Они описываются кинетическими уравнениями:

\[
r_1 = k_1 P_{H_2}(1 - \theta)^2 \quad (2)
\]

\[
r_2 = k_2 \theta^2 \quad (3)
\]

\[
r_3 = k_3 \theta \quad (4)
\]

где \(k_1 \text{[c}^{-1} \text{Па}^{-1}]\), \(k_2 \text{[c}^{-1}]\) и \(k_3 \text{[c}^{-1}]\) - константы скорости, \(P_{H_2}\) - давление \(H_2\), \(\theta (0 \leq \theta \leq 1)\) - доля центров на поверхности, занятых атомами H. Примите, что адсорбция и десорбция - быстрые процессы по сравнению с миграцией в объем \((r_1, r_2 \gg r_3)\), а \(\theta\) - практически не меняется в ходе процессов.

В.1 Для скорости \(r_3\) получено эмпирическое выражение:

\[
r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2} C}}} \quad (5)
\]

Выразите \(C\) через \(k_1\) и \(k_2\).
Образец металла с площадью поверхности $S = 1.0 \times 10^{-3} \text{м}^2$ поместили в сосуд объемом 1 л ($1.0 \times 10^{-3} \text{м}^3$), заполненный H_2 ($P_{\text{H}_2} = 1.0 \times 10^2 \text{Па}$). Поверхностная концентрация активных центров, способных адсорбировать атомы водорода, равна $N = 1.3 \times 10^{18} \text{м}^{-2}$. Температуру поверхности поддерживали равной $T = 400 \text{К}$. В результате реакций (1а) и (1б) P_{H_2} уменьшалось с постоянной скоростью $v = 4.0 \times 10^{-4} \text{Па с}^{-1}$. Считайте, что H_2 - идеальный газ, а объемом металла можно пренебречь по сравнению с объемом газа.

B.2 Рассчитайте количество атомов H в молях, мигрирующих в объем металла в расчете на единицу поверхности за единицу времени, A [моль с$^{-1} \text{м}^{-2}$].

B.3 При $T = 400 \text{К}$ константа C равна $1.0 \times 10^2 \text{Па}^{-1}$. Рассчитайте значение k_3 при 400 К. Если Вы не умеете считать и не смогли получить ответ в пункте B.2, примите $A = 3.6 \times 10^{-7} \text{моль с}^{-1} \text{м}^{-2}$.

B.4 При некоторой другой температуре T кинетические параметры равны: $C = 2.5 \times 10^3 \text{Па}^{-1}$ и $k_3 = 4.8 \times 10^2 \text{с}^{-1}$. Для зависимости скорости r_3 от давления P_{H_2} при этой температуре выберите одну правильную кривую из (a)-(h).
Водород на поверхности металла

Часть A

A.1 (6 pt)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2 (4 pt)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Часть В

В.1 (5 pt)

\[C = \quad \]

В.2 (3 pt)

\[A = \quad \text{моль} \; \text{с}^{-1} \; \text{м}^{-2} \]
B.3 (3 pt)

\[k_3 = \text{________} \, \text{c}^{-1} \]

B.4 (3 pt)

Please return this cover sheet together with all the related question sheets.
Molecular entities that differ only in isotopic composition, such as CH₄ and CH₃D, are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

\[{^{12}_2}C^{16}_2O_2 + {^{12}_2}C^{18}_2O_2 \rightleftharpoons 2{^{12}_2}C^{16}_2O^{18}_2O \]

The entropy, \(S \), increases with increasing the number of possible microscopic states of a system, \(W \):

\[S = k_B \ln W \quad (2) \]

\(W = 1 \) for \({^{12}_2}C^{16}_2O_2 \) and \({^{12}_2}C^{18}_2O_2 \). In contrast, \(W = 2 \) for a \({^{12}_2}C^{16}_2O^{18}_2O \) molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two \({^{12}_2}C^{16}_2O^{18}_2O \) molecules, \(W = 2^2 = 4 \).
A.1 The enthalpy change, ΔH, of eq. 3 is positive regardless of the temperature. Calculate the equilibrium constants, K, for eq. 3 at very low (think of $T \to 0$) and very high (think of $T \to +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

$$2\text{HD} \rightleftharpoons \text{H}_2 + \text{D}_2 \quad K = \frac{[\text{H}_2][\text{D}_2]}{[\text{HD}]^2}$$

At $T = 0$ K, the vibrational energy of a diatomic molecule whose vibration frequency is $\nu \,[s^{-1}]$ is expressed as:

$$E = \frac{1}{2} \hbar \nu$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2, according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

A.2 The vibration of H$_2$ is at 4161.0 cm$^{-1}$ when reported as a wavenumber. Calculate the ΔH of the following equation at $T = 0$ K in units of J mol$^{-1}$.

$$2\text{HD} \rightarrow \text{H}_2 + \text{D}_2$$

Assume that:
- only the vibrational energy contributes to the ΔH.
- the k values for H$_2$, HD, and D$_2$ are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.
The molar ratio of H_2, HD, and D_2 depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D_2.

$$\Delta_{\text{D}_2} = \frac{R_{\text{D}_2}}{R^*_{\text{D}_2}} - 1$$

Here, R_{D_2} refers to $\frac{[\text{D}_2]}{[\text{H}_2]}$ in the sample and $R^*_{\text{D}_2}$ to $\frac{[\text{D}_2]}{[\text{H}_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 Calculate Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.
In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO\textsubscript{2} molecules with molecular weights of 44 and 47, which are described as CO\textsubscript{2}[44] and CO\textsubscript{2}[47] below. The quantity Δ_{47} is defined as:

$$
\Delta_{47} = \frac{R_{47}^*}{R_{47}} - 1
$$

(10)

R_{47} refers to $[\text{CO}_2[47]]$ in the sample and R_{47}^* to $[\text{CO}_2[47]]$ at $T \rightarrow +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

<table>
<thead>
<tr>
<th></th>
<th>12C</th>
<th>13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>16O</th>
<th>17O</th>
<th>18O</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural abundance</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$
\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4}
$$

(11)

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5}. Estimate the temperature using this R_{47}. This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of CO\textsubscript{2}[47] for the calculation.
Молекулы, отличающиеся только изотопным составом, например, CH₄ и CH₃D, называют изотопологами. Считается, что изотопологи имеют одинаковые химические свойства. На самом деле, есть небольшие различия.

Везде в этой задаче считайте, что все вещества находятся в газовой фазе.

Рассмотрим следующее равновесие:

\[
^{12}\text{C}^{16}\text{O}_2 + ^{12}\text{C}^{18}\text{O}_2 \rightleftharpoons 2^{12}\text{C}^{16}\text{O}^{18}\text{O}
\]

\[
K = \frac{[^{12}\text{C}^{16}\text{O}^{18}\text{O}]^2}{[^{12}\text{C}^{16}\text{O}_2][^{12}\text{C}^{18}\text{O}_2]}
\]

(1)

Энтропия \(S\) растет с увеличением числа возможных микросостояний системы, \(W\):

\[
S = k_B \ln W
\]

(2)

\(W = 1\) для \(^{12}\text{C}^{16}\text{O}_2\) и \(^{12}\text{C}^{18}\text{O}_2\). Однако, для молекулы \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\) \(W = 2\), так как атомы кислорода различимы. В правой части уравнения реакции (1) - две молекулы \(^{12}\text{C}^{16}\text{O}^{18}\text{O}\), поэтому для продукта реакции \(W = 2^2 = 4\).
A.1

В реакции (3) изменение энталпии, ΔH, - положительное при любой температуре.

\[H_2 + DI \rightleftharpoons HD + HI \]

(3)

Рассчитайте предельные значения константы равновесия K для реакции (3) при очень низких ($T \to 0$) и очень высоких ($T \to +\infty$) температурах. Примите, что в этих условиях уравнение реакции не меняется, а значение ΔH при высоких температурах стремится к конечному пределу.

Значение ΔH приведенной ниже реакции можно рассчитать, рассматривая молекулярные колебания.

\[2HD \rightleftharpoons H_2 + D_2 \]

\[K = \frac{[H_2][D_2]}{[HD]^2} \]

(4)

При $T = 0$ К колебательная энергия двухатомной молекулы с частотой колебаний $\nu \ [c^{-1}]$ имеет вид:

\[E = \frac{1}{2} h \nu \]

(5)

\[\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \]

(6)

где k - силовая постоянная, а μ - приведенная масса молекулы, которая выражается через массы атомов m_1 и m_2 следующим образом:

\[\mu = \frac{m_1 m_2}{m_1 + m_2} \]

(7)

A.2

Колебательная частота H_2 равна 4161.0 см$^{-1}$ в единицах волновых чисел. **Рассчитайте** ΔH приведенной ниже реакции при $T = 0$ К в единицах Дже́р моль$^{-1}$.

\[2HD \to H_2 + D_2 \]

(8)

Считайте, что:

- Вклад в ΔH вносит только колебательная энергия.
- Значение k для молекул H_2, HD и D_2 - одно и то же.
- Масса атома H равна 1 Да, а масса атома D равна 2 Да.
Мольное соотношение H₂, HD и D₂ в равновесной системе зависит от температуры. Обозначим через ΔD₂ величину, характеризующую отклонение содержания D₂ при данной температуре от предельного значения при очень высокой температуре.

\[\Delta D_2 = \frac{R_{D_2}}{R_{D_2}^*} - 1 \]

(9)

Здесь \(R_{D_2} \) обозначает \(\frac{[D_2]}{[H_2]} \) в системе при заданной температуре, а \(R_{D_2}^* \) равно \(\frac{[D_2]}{[H_2]} \) при \(T \to +\infty \). Отметим, что при \(T \to +\infty \) распределение изотопов между молекулами становится статистическим и определяется только их природным содержанием.

А.3 Рассчитайте ΔD₂ с природным содержанием D в равновесной смеси изотопов при температуре, при которой константа равновесия \(K \) реакции (4) равна 0.300. Природное мольное содержание изотопов D и H равно, соответственно, \(1.5576 \times 10^{-4} \) и \((1 - 1.5576 \times 10^{-4}) \).
В общем случае, мольная доля двукратно замещенных изотопологов, содержащих два тяжелых изотопа в молекуле, растет с понижением температуры. Рассмотрим мольное содержание молекул CO₂ с молекулярными массами 44 и 47, обозначим эти молекулы CO₂[44] и CO₂[47]. Величина Δ₄₇ определяется так:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^\star} - 1$$ \hspace{1cm} (10)

где R_{47} равно $\frac{[\text{CO}_2[47]]}{[\text{CO}_2[44]]}$ в равновесной системе при заданной температуре, а R_{47}^\star равно $\frac{[\text{CO}_2[47]]}{[\text{CO}_2[44]]}$ при $T \to +\infty$. Природные мольные доли изотопов приведены ниже. Изотопы, отсутствующие в таблице, рассматривать не нужно.

<table>
<thead>
<tr>
<th></th>
<th>¹²C</th>
<th>¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td>природное мольное содержание</td>
<td>0.988888</td>
<td>0.011112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>¹⁶O</th>
<th>¹⁷O</th>
<th>¹⁸O</th>
</tr>
</thead>
<tbody>
<tr>
<td>природное мольное содержание</td>
<td>0.997621</td>
<td>0.0003790</td>
<td>0.0020000</td>
</tr>
</tbody>
</table>

Зависимость величины Δ_{47} от абсолютной температуры T (в К) имеет вид:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4}$$ \hspace{1cm} (11)

А.4 Значение R_{47}, измеренное для ископаемого планктона, собранного с морского дна близ Антарктики, оказалось равно 4.50865×10^{-5}. Рассчитайте температуру, используя это значение R_{47}. Полученное значение характеризует температуру воздуха в эпоху жизни планктона. При расчете используйте только самый распространенный изотоп CO₂[47].
Изотопы в природе

А.1 (8 pt)

\[T \to 0 : K = \quad , \quad T \to +\infty : K = \quad \]
ΔΗ = \text{Дж моль}^{-1}
A.3 (10 pt)

\[\Delta_0 = \]
\[T = \text{K} \]
Please return this cover sheet together with all the related question sheets.
In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution X was prepared using HA and NaA. The concentrations \([A^-], [HA], \) and \([H^+]\) in solution X are \(1.00 \times 10^{-2} \text{ mol L}^{-1}\), \(1.00 \times 10^{-3} \text{ mol L}^{-1}\), and \(1.00 \times 10^{-4} \text{ mol L}^{-1}\), respectively, which are correlated via the following acid-base equilibrium:

\[
\text{HA} \rightleftharpoons A^- + H^+ \quad K = \frac{[A^-][H^+]}{[HA]} \tag{1}
\]

The optical path length is \(l\) in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of X was \(A_1\) at a wavelength of \(\lambda_1\). Then, solution X was diluted to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still \(A_1\) at \(\lambda_1\). **Determine** the ratio \(\varepsilon_{HA}/\varepsilon_{A^-}\), where \(\varepsilon_{HA}\) and \(\varepsilon_{A^-}\) represent the absorption coefficients of HA and of A\(^-\), respectively, at \(\lambda_1\).
Part B

Let us consider the following equilibrium in the gas phase.

\[\text{D} \rightleftharpoons 2\text{M} \quad (2) \]

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of \(S \) (see the figure below) at a pressure \(P \), and equilibrium is established while the total pressure is kept at \(P \). The absorbance of the gas is \(A = \varepsilon (n/V)l \), where \(\varepsilon \), \(n \), \(V \), and \(l \) are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

<table>
<thead>
<tr>
<th>Initial state</th>
<th>After equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial pressure</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(P)</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>Amount in moles</td>
<td>(n_0)</td>
</tr>
<tr>
<td>Volume</td>
<td>(V_0)</td>
</tr>
</tbody>
</table>

B.1 The absorbance of the gas at \(\lambda_{B1} \) measured from direction \(x \) \((l = l_x) \) was \(A_{B1} \) both at the initial state and after the equilibrium. **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B1} \), where \(\varepsilon_D \) and \(\varepsilon_M \) represent the absorption coefficients of D and of M, respectively.

B.2 The absorbance of the gas at \(\lambda_{B2} \) measured from direction \(y \) was \(A_{B2} \) both at the initial state \((l = l_y) \) and after the equilibrium \((l = l_y) \). **Determine** the ratio \(\varepsilon_D/\varepsilon_M \) at \(\lambda_{B2} \).
Закон Бугера-Ламберта-Бера?

<table>
<thead>
<tr>
<th>Вопрос</th>
<th>A.1</th>
<th>B.1</th>
<th>B.2</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очки</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Оценка</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В данной задаче пренебрегайте поглощением ячейки и растворителя. Температура всех растворов и газов постоянна и равна 25 °C.

Часть A

Водный раствор X приготовили из HA и NaA. Концентрации $[A^-]$, $[HA]$ и $[H^+]$ в растворе X равны 1.00×10^{-2}, 1.00×10^{-3} и 1.00×10^{-4} моль л$^{-1}$, соответственно. В системе установилось кислотно-основное равновесие:

$$
HA \rightleftharpoons A^- + H^+ \\
K = \frac{[A^-][H^+]}{[HA]}
$$

В Части A длина оптического пути равна l. Пренебрегайте изменением плотности при разбавлении. Считайте, что в системе не протекает никаких реакций, кроме реакции (1).

A.1 Поглощение X составило A_1 при длине волны λ_1. После измерения раствор X разбавили в два раза добавлением соляной кислоты с $pH = 2.500$. После разбавления поглощение не изменилось и составило A_1 при λ_1.

Определите отношение $\varepsilon_{HA}/\varepsilon_{A^-}$, где ε_{HA} и ε_{A^-} - молярные коэффициенты поглощения HA и A$^-$, соответственно, при λ_1.

10pt
Часть B

Рассмотрим следующее равновесие в газовой фазе

\[\text{D} \rightleftharpoons 2\text{M} \quad (2) \]

Прямоугольный резервуар с прозрачной подвижной стенкой площадью \(S \) заполнили чистым газом D (см. рисунок ниже) под давлением \(P \). В системе установилось равновесие, при этом общее давление не изменилось и равно \(P \). Поглощение газа равно \(A = \varepsilon (n/V)l \), где \(\varepsilon \), \(n \), \(V \) и \(l \) - молярный коэффициент поглощения, количество газа в молях, объем газа и длина оптического пути, соответственно. Считайте, что все компоненты газовой смеси - идеальные газы.

Используйте следующие обозначения.

<table>
<thead>
<tr>
<th>Исходное состояние</th>
<th>После достижения равновесия</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Парциальное давление</td>
<td>(P)</td>
</tr>
<tr>
<td>Количество в молях</td>
<td>(n_0)</td>
</tr>
<tr>
<td>Объем</td>
<td>(V_0)</td>
</tr>
</tbody>
</table>

B.1 Поглощение газа при \(\lambda_{B1} \), измеренное вдоль направления \(x \) (\(l = l_x \)) составило \(A_{B1} \) как для исходного состояния, так и после достижения равновесия. Определите отношение \(\varepsilon_D / \varepsilon_M \) при \(\lambda_{B1} \), где \(\varepsilon_D \) и \(\varepsilon_M \) обозначают молярные коэффициенты поглощения D и M, соответственно.

B.2 Поглощение газа при \(\lambda_{B2} \), измеренное вдоль направления \(y \), составило \(A_{B2} \) как для исходного состояния (\(l = l_y \)), так и после достижения равновесия (\(l = l_y \)). Определите отношение \(\varepsilon_D / \varepsilon_M \) при \(\lambda_{B2} \).
Закон Бугера-Ламберта-Бера?

Часть A

A.1 (10 pt)

(Продолжайте на следующей странице)
Часть B

B.1 (6 pt)

$$\varepsilon_D / \varepsilon_M = \text{___________}$$
\[\varepsilon_D / \varepsilon_M = \]
Please return this cover sheet together with all the related question sheets.
The Redox Chemistry of Zinc

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $\text{Zn(OH)}_2(s)$ at $25 \, ^\circ\text{C}$ and the relevant equilibrium constants are given in eq. 1–4.

1. $\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \quad K_{sp} = 1.74 \times 10^{-17}$ (1)

2. $\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6}$ (2)

3. $\text{Zn(OH)}_2(s) + 2\text{OH}^-(aq) \rightleftharpoons \text{Zn(OH)}_2^2^+ (aq) \quad K_2 = 6.47 \times 10^{-2}$ (3)

4. $\text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq) \quad K_w = 1.00 \times 10^{-14}$ (4)
The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [\text{Zn}^{2+}(\text{aq})] + [\text{Zn(OH)}_2(\text{aq})] + [\text{Zn(OH)}_4^{2-}(\text{aq})] \quad (5)$$

A.1
When the equilibria in eq. 1–4 are established, calculate the pH range in which $[\text{Zn(OH)}_2(\text{aq})]$ is the greatest among $[\text{Zn}^{2+}(\text{aq})]$, $[\text{Zn(OH)}_2(\text{aq})]$ and $[\text{Zn(OH)}_4^{2-}(\text{aq})]$.

A.2
A saturated aqueous solution of Zn(OH)$_2$(s) with pH = 7.00 was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. Calculate the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B
Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$\text{Zn(OH)}_2(\text{s}) \rightarrow \text{ZnO}(\text{s}) + \text{H}_2\text{O}(\text{l}) \quad (6)$$

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$\text{ZnO}(\text{s}) + \text{H}_2(\text{g}) \rightarrow \text{Zn}(\text{s}) + \text{H}_2\text{O}(\text{g}) \quad (7)$$

B.1
In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. Calculate the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{\text{ZnO}}(300^\circ \text{C}) = -2.90 \times 10^2 \text{ kJ mol}^{-1}$ and $\Delta G_{\text{H}_2\text{O}}(300^\circ \text{C}) = -2.20 \times 10^2 \text{ kJ mol}^{-1}$, respectively.

B.2
A zinc–air battery was discharged at 20 mA for 24 hours. Calculate the change in mass of the negative electrode (anode) of the battery.
B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environment. **Calculate** the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are $-38 \, ^\circ\text{C}$ (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P \, \text{[bar]} = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257}$$

(9)

at altitude $h \, [\text{m}]$ and temperature $T \, [\text{C}]$. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{\text{ZnO}}(-38 \, ^\circ\text{C}) = -3.26 \times 10^2 \, \text{kJ mol}^{-1}$ at $-38 \, ^\circ\text{C}$ and 1 bar.

B.4 **Calculate** the Gibbs energy change for reaction (6) at 25 $^\circ\text{C}$. Note that the standard reduction potentials, $E^\circ(\text{Zn}^{2+}/\text{Zn})$ and $E^\circ(\text{O}_2/\text{H}_2\text{O})$ at 25 $^\circ\text{C}$ and 1 bar are given as (10) and (11), respectively.

$$\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \quad E^\circ(\text{Zn}^{2+}/\text{Zn}) = -0.77 \, \text{V} \quad (10)$$

$$\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \quad E^\circ(\text{O}_2/\text{H}_2\text{O}) = 1.23 \, \text{V} \quad (11)$$
Цинк давно используют для изготовления латуны и покрытий для стали. Регенерация цинка из промышленных сточных вод производится путем его осаждения и последующего восстановления осадка до металла.

Часть A

Реакции, протекающие при растворении гидроксида цинка Zn(OH)$_2$(s) при 25 °C, и соответствующие константы равновесия приведены в уравнениях (1)–(4). (Здесь и далее обозначения: s - твердый, aq - водный раствор, l - жидкость).

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn}^{2+}(aq) + 2\text{OH}^-(aq) \quad K_{sp} = 1.74 \times 10^{-17} \tag{1}
\]

\[
\text{Zn(OH)}_2(s) \rightleftharpoons \text{Zn(OH)}_2(aq) \quad K_1 = 2.62 \times 10^{-6} \tag{2}
\]

\[
\text{Zn(OH)}_2(s) + 2\text{OH}^-(aq) \rightleftharpoons \text{Zn(OH)}_4^{2-}(aq) \quad K_2 = 6.47 \times 10^{-2} \tag{3}
\]

\[
\text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq) \quad K_w = 1.00 \times 10^{-14} \tag{4}
\]
Растворимость, S, цинка (общая молярная концентрация цинка в насыщенном водном растворе) дается уравнением (5).

$$S = [\text{Zn}^2+(\text{aq})] + [\text{Zn(OH)}_2(\text{aq})] + [\text{Zn(OH)}_2^2(\text{aq})]$$

(5)

A.1
Считая, что равновесия (1)–(4) установились, **рассчитайте** интервал pH, в котором концентрация $[\text{Zn(OH)}_2(\text{aq})]$ наибольшая среди концентраций всех частиц $[\text{Zn}^2+(\text{aq})]$, $[\text{Zn(OH)}_2(\text{aq})]$ и $[\text{Zn(OH)}_2^2(\text{aq})]$.

A.2
Приготовили насыщенный водный раствор $\text{Zn(OH)}_2(s)$ с pH = 7.00 и отфильтровали. К фильтрату добавили NaOH до pH 12.00. **Рассчитайте** мольную долю (в %) цинка, который перейдет в осадок при повышении pH от 7.00 до 12.00. Изменением объема и температуры пренебрегите.

Часть B
Затем осажденный гидроксид цинка нагревают для получения оксида цинка по уравнению:

$$\text{Zn(OH)}_2(s) \rightarrow \text{ZnO}(s) + \text{H}_2\text{O}(l)$$

(6)

После этого оксид цинка восстанавливают до металла водородом:

$$\text{ZnO}(s) + \text{H}_2(g) \rightarrow \text{Zn}(s) + \text{H}_2\text{O}(g)$$

(7)

B.1
Чтобы реакция (7) протекала при давлении водорода 1 бар, необходимо понижать парциальное давление образующегося водяного пара. **Рассчитайте**, при каком максимальном парциальном давлении водяного пара реакция (7) будет протекать при 300 °C. Стандартные энергии Гиббса образования оксида цинка и водяного пара при 300 °C равны $\Delta G_{\text{ZnO}}(300\,^\circ\text{C}) = -2.90 \times 10^2$ кДж моль$^{-1}$ и $\Delta G_{\text{H}_2\text{O}}(300\,^\circ\text{C}) = -2.20 \times 10^2$ кДж моль$^{-1}$, соответственно.

Металлический цинк используется в качестве материала отрицательного электрода (анода) в металло-воздушных батареях. Электрод состоит из Zn и ZnO. Уравнение реакции, на которой основано действие батареи, и ее стандартная эдс при 25 °C и давлении 1 бар, E°, приведены ниже:

$$\text{Zn}(s) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{ZnO}(s) \quad E^\circ = 1.65\,\text{V}$$

(8)

B.2
Цинк-воздушную батарею разряжали при токе 20 мА в течение 24 часов. **Рассчитайте** изменение массы отрицательного электрода (анода) батареи.
Значение эдс цинк-воздушной батареи зависит от условий. Рассчитайте эдс на вершине горы Фудзи, где температура и высота составляют $-38^\circ C$ (в феврале) и 3776 м, соответственно. Атмосферное давление может быть рассчитано по формуле:

$$P \text{[bar]} = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257}$$

где $h \text{[m]}$ - высота в м, $T \text{[^\circ C]}$ - температура в °C. Мольная доля кислорода в атмосфере равна 21%. Стандартная энергия Гиббса реакции (8) равна $\Delta G_{ZnO}(-38^\circ C) = -3.26 \times 10^2 \text{kJ моль}^{-1}$ при $-38^\circ C$ и 1 бар.

Рассчитайте изменение стандартной энергии Гиббса в реакции (6) при $25^\circ C$. Стандартные потенциалы $E^\circ(Zn^{2+}/Zn)$ и $E^\circ(O_2/H_2O)$ при $25^\circ C$ и 1 бар приведены в выражениях (10) и (11), соответственно.

$$Zn^{2+} + 2e^- \rightarrow Zn \quad E^\circ(Zn^{2+}/Zn) = -0.77 \text{V} \quad (10)$$

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \quad E^\circ(O_2/H_2O) = 1.23 \text{V} \quad (11)$$
Редокс-химия цинка

Часть A

A.1 (6 pt)

<_ pH _>
A.2 (5 pt)

%
Часть В

B.1 (4 pt)

\[p_{H_2O} = \text{бар} \]

B.2 (3 pt)

\[\text{г} \]
B.3 (5 pt)
$\Delta G^\circ = \text{Дж моль}^{-1}$
IChO
Problem 5
Cover sheet

Please return this cover sheet together with all the related question sheets.
Mysterious Silicon

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>B.1</th>
<th>B.2</th>
<th>B.3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>60</td>
</tr>
</tbody>
</table>

Score

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as \(R^1\text{–Si} \equiv \text{Si}\text{–}R^1 \) (\(R \): organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

\[
R^1\text{–Si} \equiv \text{Si} \equiv R^1 + H_2C=CH_2 \rightarrow \begin{array}{c} \text{Si} \equiv \text{Si} \\ \text{R}^1 \end{array}
\]

When \(R^1\text{–Si} \equiv \text{Si} \equiv R^1 \) is treated with an alkyne (\(R^2\text{–C} \equiv \text{C} \equiv R^2 \)), the four-membered-ring compound A is formed as an initial intermediate. Further reaction of another molecule of \(R^2\text{–C} \equiv \text{C} \equiv R^2 \) with A affords isomers B and C, both of which have benzene-like cyclic conjugated structures, so-called ‘disilabenzenes’ that contain a six-membered ring and can be formulated as \((R^1\text{–Si})_2(R^2\text{–C})_4\).
The 13C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for B and one signal for C.

A.1 Draw the structural formulae of A, B, and C using R^1, R^2, Si, and C, with one of the possible resonance structures.

A.2 Calculate the aromatic stabilization energy (ASE) for benzene and C (in the case of $R^1 = R^2 = \text{H}$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

\[
\begin{align*}
\text{H}_2\text{C} &= \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{C} &= \text{CH}_3, \Delta H = -135 \text{ kJ mol}^{-1} \quad (1) \\
\text{H}_2\text{Si} &= \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{CH}_3, \Delta H = -213 \text{ kJ mol}^{-1} \quad (2) \\
\text{H}_2\text{Si} &= \text{SiH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{SiH}_3, \Delta H = -206 \text{ kJ mol}^{-1} \quad (3) \\
\text{C} + 3 \text{H}_2 &\rightarrow \Delta H = -173 \text{ kJ mol}^{-1} \quad (4) \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{SiH}_2, \Delta H = -326 \text{ kJ mol}^{-1} \quad (5) \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{SiH}_2, \Delta H = -368 \text{ kJ mol}^{-1} \quad (6) \\
\text{H}_2\text{Si} &= \text{SiH} + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} &= \text{SiH}_2, \Delta H = -389 \text{ kJ mol}^{-1} \quad (7) \\
\end{align*}
\]
When a xylene solution of C is heated, it undergoes isomerization to give an equilibrium mixture of compounds D and E. The molar ratio is \(\text{D} : \text{E} = 1 : 40.0 \) at 50.0 °C and \(\text{D} : \text{E} = 1 : 20.0 \) at 120.0 °C.

A.3 Calculate \(\Delta H \) for the transformation of D to E. Assume that \(\Delta H \) does not depend on temperature.

The isomerization from C to D and to E proceeds via transformations of \(\pi \)-bonds into \(\sigma \)-bonds without breaking any \(\sigma \)-bonds. A \(^{13}\)C NMR analysis revealed one signal for the \(\text{Si}_2\text{C}_4 \) skeleton of D and two signals for that of E. The skeleton of D does not contain any three-membered rings, while E has two three-membered rings that share an edge.

A.4 Draw the structural formulae of D and E using \(R^1 \), \(R^2 \), Si, and C.

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl\(_4\) using Na\(_2\)SiF\(_6\) was carried out as follows.

- **Standardization of Na\(_2\)SiF\(_6\) solution**:
 - **Preparation**
 - Aqueous solution F: 0.855 g of Na\(_2\)SiF\(_6\) (188.053 g mol\(^{-1}\)) dissolved in water (total volume: 200 mL).
 - Aqueous solution G: 6.86 g of Ce\(_2\)(SO\(_4\))\(_3\) (568.424 g mol\(^{-1}\)) dissolved in water (total volume: 200 mL).
 - **Procedure**
 - Precipitation titration of a solution F (50.0 mL) by dropwise adding solution G in the presence of xylenol orange, which coordinates to Ce\(^{3+}\), as an indicator. After adding 18.8 mL of solution G, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce\(^{3+}\), and the only resulting silicon compound is Si(OH)\(_4\).

B.1 Write the balanced equation for the reaction of Na\(_2\)SiF\(_6\) with Ce\(_2\)(SO\(_4\))\(_3\).

- **Reaction of CCl\(_4\)** with Na\(_2\)SiF\(_6\)**:
 - (Substance losses by \textit{e.g.} evaporation are negligible during the following operations.)
 - Na\(_2\)SiF\(_6\)(\(x\) [g]) was added to CCl\(_4\) (500.0 g) and heated to 300 °C in a sealed pressure-resistant reaction vessel. The unreacted Na\(_2\)SiF\(_6\) and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl\(_4\) (solution H).
 - The \(^{29}\)Si and \(^{19}\)F NMR spectra of solution H showed SiF\(_4\) as the only silicon compound. In the \(^{19}\)F NMR spectrum, in addition to SiF\(_4\), signals corresponding to CFCl\(_3\), CF\(_2\)Cl\(_2\), CF\(_3\)Cl, and CF\(_4\) were observed (\textit{cf.} Table 1). The integration ratios in the \(^{19}\)F NMR spectrum are proportional to the number of fluorine nuclei.

<table>
<thead>
<tr>
<th>(^{19})F NMR data</th>
<th>CFCl(_3)</th>
<th>CF(_2)Cl(_2)</th>
<th>CF(_3)Cl</th>
<th>CF(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration ratio</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

\[3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6 \quad (8) \]

Solution H (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H₂SiF₆ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na₂SiF₆ (aqueous solution J).

The precipitate of unreacted Na₂SiF₆ and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution K; 10.0 L).

Then, additional precipitation titrations using solution G were carried out, and the endpoints of the titrations with G were as follows:
- For solution J (entire amount): 61.6 mL.
- For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

B.2 Calculate the mass of the NaCl produced in the reaction vessel (information underlined), and calculate the mass (x [g]) of the Na₂SiF₆ used as a starting material.

B.3 77.8% of the CCl₄ used as a starting material was unreacted. Calculate the mass of CF₃Cl generated.
Хотя кремний и углерод находятся в одной и той же 14-ой группе, их свойства существенно различны.

Часть A

В отличие от тройной связи углерод-углерод, тройная связь кремний-кремний в соединении $R_1^1\text{Si}\equiv\text{Si}\equiv R_1^1$ (R: органический заместитель) проявляет исключительно высокую реакционную способность. Например, указанное выше соединение реагирует с этиленом с образованием циклического продукта, содержащего четырехчленный цикл.

\[
R_1^1\text{Si}\equiv\text{Si}\equiv R_1^1 + \text{H}_2\text{C}\equiv\text{CH}_2 \rightarrow \begin{array}{c}
\text{Si} \\
\uparrow \\
\text{Si}
\end{array} \begin{array}{c}
R_1^1 \\
\downarrow \\
R_1^1
\end{array}
\]

При взаимодействии $R_1^1\text{Si}\equiv\text{Si}\equiv R_1^1$ с алкином ($R^2^2\text{C} \equiv \text{C}\equiv R^2^2$), образуется A, содержащее четырехчленный цикл. Дальнейшая реакция еще одной молекулы $R^2^2\text{C} \equiv \text{C}\equiv R^2^2$ с A приводит к образованию изомеров B и C, обладающих бензоло-подобной циклической системой сопряженных связей.
Эти так называемые 'дисилабензолы' содержат шестичленные циклы и могут быть представлены как \((R^1\text{-Si})_2(R^2\text{-C})_4\).

\[
R^1\text{-Si} \equiv \text{Si} \equiv R^1 + R^2\text{-C} \equiv \text{C} \equiv R^2 \rightarrow A \xrightarrow{R^2\text{-C} \equiv \text{C} \equiv R^2} B + C
\]

По данным \(^{13}\text{C}\) ЯМР спектроскопии циклический скелет \(\text{Si}_2\text{C}_4\) дает два сигнала в случае \(B\) и один сигнал в случае \(C\).

A.1 Изобразите по одной резонансной структуре \(A\), \(B\) и \(C\), используя обозначения \(R^1\), \(R^2\), Si и C.

A.2 Рассчитайте энергию ароматической резонансной стабилизации (ASE) для бензола и соединения \(C\) (для случая \(R^1 = R^2 = H\)) в виде положительных значений, используя изменения энталпии некоторых реакций гидрирования ненасыщенных систем, приведенных ниже (рис. 1).

\[
\begin{align*}
\text{H}_2\text{C} & \equiv \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{C} & \equiv \text{CH}_3 & \Delta H = -135 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} & \equiv \text{CH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{CH}_3 & \Delta H = -213 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} & \equiv \text{SiH}_2 + \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{SiH}_3 & \Delta H = -206 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} & \equiv \text{SiH}_2 + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{SiH}_3 & \Delta H = -173 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} & \equiv \text{SiH}_2 + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{SiH}_2 & \Delta H = -326 \text{ kJ mol}^{-1} \\
\text{H}_2\text{Si} & \equiv \text{SiH}_2 + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{SiH}_2 & \Delta H = -368 \text{ kJ mol}^{-1} \\n\text{H}_2\text{Si} & \equiv \text{SiH}_2 + 3 \text{H}_2 \rightarrow \text{H}_3\text{Si} & \equiv \text{SiH}_2 & \Delta H = -389 \text{ kJ mol}^{-1}
\end{align*}
\]

Рис. 1
При нагревании ксилольного раствора соединения C оно претерпевает изомеризацию с образованием равновесной смеси соединений D и E. Установлены следующие молярные соотношения:

$D : E = 1 : 40.0$ при $50.0 \degree C$ и $D : E = 1 : 20.0$ при $120.0 \degree C$.

A.3 Рассчитайте ΔH превращения D в E. Считайте, что ΔH не зависит от температуры.

Изомеризация C в D и E протекает через преобразование π-связей в σ-связи без разрыва каких-либо σ-связей. По данным ^{13}C ЯМР в спектре D присутствует один сигнал циклического скелета Si_2C_4, а в спектре E - два сигнала циклического скелета. В скелете D отсутствуют трехчленные циклы, а в скелете E присутствуют два трехчленных цикла с общим ребром.

A.4 Изобразите структуры D и E, используя обозначения R_1, R_2, Si и C.

Часть B

Кремний также способен образовывать высококоординированные соединения (больше четырех заместителей) с электроотрицательными элементами, такими как фтор. Наряду с фторидами металлов, фториды высококоординированного кремния используются как фторирующие реагенты.

Реакцию фторирования CCl_4 с использованием Na_2SiF_6 осуществили следующим образом.

- **Стандартизация раствора Na_2SiF_6**:
 - **Приготовление**
 Водный раствор F: 0.855 г Na_2SiF_6 (188.053 г моль$^{-1}$) растворили в воде (общий объем 200 мл).
 Водный раствор G: 6.86 г $Ce_2(SO_4)_3$ (568.424 г моль$^{-1}$) растворили в воде (общий объем 200 мл).
 - **Методика**
 Проводили осадительное титрование раствора F (50.0 мл), добавляя по каплям раствор G, используя в качестве индикатора ксиленовый оранжевый, который координируется с Ce^{3+}. После добавления 18.8 мл раствора G цвет титруемого раствора изменился с желтого на пурпурно-красный. Образовавшийся осадок представляет собой бинарное соединение, содержащее Ce^{3+}, а единственным образующимся соединением кремния является $Si(OH)_4$.

B.1 Запишите уравнение реакции Na_2SiF_6 с $Ce_2(SO_4)_3$.

- **Реакция CCl_4 с Na_2SiF_6**:
 (Пренебрегите потерями вещества, например, в результате испарения, на нижеследующих стадиях).

 $Na_2SiF_6(x \ [g])$ добавили к CCl_4 (500.0 г) и нагрели до 300 $\degree C$ в запаянном реакционном сосуде, выдерживая повышенное давление. Непрореагировавший Na_2SiF_6 и образовавшийся $NaCl$ удаляли filtration. Фильтрат разбавили CCl_4 до общего объема 1.00 л (рассор H). Спектры ^{29}Si и ^{19}F ЯМР раствора H показали, что SiF_4 присутствует в качестве единственного кремнийсодержащего соединения. В спектре ^{19}F ЯМР, помимо SiF_4, были обнаружены сигналы, соответствующие $CFCl_3$, CF_2Cl_2, CF_3Cl и CF_4 (см. Таблицу 1). Интегральные интенсивности в спектрах ^{19}F ЯМР пропорциональны количеству ядер фтора.
Таблица 1

<table>
<thead>
<tr>
<th>Данные 19F ЯМР</th>
<th>CFCl$_3$</th>
<th>CF$_2$Cl$_2$</th>
<th>CF$_3$Cl</th>
<th>CF$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Интегральная интенсивность</td>
<td>45.0</td>
<td>65.0</td>
<td>18.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

SiF$_4$ гидролизуется с образованием H$_2$SiF$_6$ согласно уравнению (8):

$$3\text{SiF}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 2\text{H}_2\text{SiF}_6$$ (8)

Раствор H (10 мл) добавили к избытку воды, что привело к полному гидролизу SiF$_4$. После разделения H$_2$SiF$_6$, полученный в результате гидролиза в водном растворе, был нейтрализован и полностью переведен в Na$_2$SiF$_6$ (водный раствор J).

Осадок, содержащий непрореагировавший Na$_2$SiF$_6$ и NaCl, который был получен фильтрованием ранее (см. выше подчеркнутый текст), полностью растворили в воде (раствор K; 10.0 л).

Далее провели новые осадительные титрования, используя раствор G. Конечные точки титрования раствором G приведены ниже:
· Для всего количества раствора J: 61.6 мл.
· Для 100 мл раствора K: 44.4 мл.

Учтите, что присутствие NaCl или SiO$_2$ не сказывается на результатах осадительного титрования.

В.2 Рассчитайте массу NaCl, полученного в реакционном сосуде (подчеркнутый текст выше), и рассчитайте массу (x [г]) Na$_2$SiF$_6$, использованного в качестве исходного вещества.

В.3 77.8% CCl$_4$, использованного в качестве исходного вещества, осталось непрореагировавшим. Рассчитайте массу образовавшегося CF$_3$Cl.
Загадочный кремний

Часть A

A.1 (9 pt)

<table>
<thead>
<tr>
<th>A (3 pt)</th>
<th>B (3 pt)</th>
<th>C (3 pt)</th>
</tr>
</thead>
</table>

A.2 (7 pt)

\[
\begin{align*}
C_6H_6 : & \quad \text{kDж моль}^{-1}, \\
C : & \quad \text{kDж моль}^{-1}
\end{align*}
\]
A.3 (6 pt)

$\Delta H = \text{кДж моль}^{-1}$

A.4 (10 pt)

D (5 pt)

E (5 pt)
Часть B

B.1 (5 pt)

B.2 (15 pt)

(Продолжайте на следующей странице)
NaCl : r, Na$_2$SiF$_6$: r
CF₃Cl: ___________ г
IChO
Problem 6
Cover sheet

Please return this cover sheet together with all the related question sheets.
The Solid-State Chemistry of Transition Metals

Volcano at Sakurajima island

Part A

Japan is one of the countries with the highest numbers of volcanoes worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M\(^{n+}\)) in the magma is incorporated into the silicate minerals. The M\(^{n+}\) studied in the problem are coordinated by oxide ions (O\(^2-\)) and adopt a four-coordinate tetrahedral (T\(_d\)) geometry in the magma and six-coordinate octahedral (O\(_h\)) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M\(^{n+}\) between the silicate minerals and magma, D, can be expressed by:

\[
D = \frac{[M]_s}{[M]_l}
\]

where [M]\(_s\) and [M]\(_l\) are the concentrations of M\(^{n+}\) in the silicate minerals and the magma, respectively. The table below shows the D values of Cr\(^{2+}\) and Mn\(^{2+}\) as examples.

<table>
<thead>
<tr>
<th></th>
<th>Cr(^{2+})</th>
<th>Mn(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>7.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Let Δ_O and CFSE^O be the energy separation of the d-orbitals of M^{n+} and the crystal-field stabilization energy in an O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

A.1 Calculate $|\text{CFSE}^O - \text{CFSE}^T| = \Delta\text{CFSE}$ in terms of Δ_O for Cr^{2+}, Mn^{2+}, and Co^{2+}; assume $\Delta_T = 4/9\Delta_O$.

A.2 A linear relationship is observed by plotting $\ln(D)$ against $\Delta\text{CFSE} / \Delta_O$ in the Cartesian coordinate system shown below. Estimate D for Co^{2+}.

Metal oxides MO ($\text{M}: \text{Ca, Ti, V, Mn, or Co}$) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

A.3 Choose the appropriate set of lattice enthalpies [kJ mol$^{-1}$] from one of the options (a) to (f).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
A mixed oxide A, which contains La$^{3+}$ and Cu$^{2+}$, crystallizes in a tetragonal unit cell shown in Fig. 1. In the [CuO$_6$] octahedron, the Cu–O length along the z-axis (l_z) is longer than that of the x-axis (l_x), and [CuO$_6$] is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e$_g$ orbitals ($d_{x^2−y^2}$ and d_{z^2}).

A can be synthesized by thermal decomposition (pyrolysis) of complex B, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid C$_4$H$_2$O$_4$, i.e., a diacid. The pyrolysis behavior of B in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO$_2$. The total weight loss during the formation of A from B is 63.6%. It should be noted that only water and CO$_2$ are released in the pyrolysis reaction.

B.1 Write the chemical formulae for A and B. 6pt

B.2 Calculate l_x and l_z using Fig. 1. 4pt

B.3 For Cu$^{2+}$ in the distorted [CuO$_6$] octahedron in A of Fig. 1, write the names of the split e$_g$ orbitals ($d_{x^2−y^2}$ and d_{z^2}) in (i) and (ii), and draw the electron configuration in the dotted box in your answer sheet. 4pt
A is an insulator. When one La$^{3+}$ is substituted with one Sr$^{2+}$, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr$^{2+}$-doped A shows superconductivity below 38 K. When a substitution reaction took place for A, 2.05×10^{27} holes m$^{-3}$ were generated.

B.4 Calculate the percentage of Sr$^{2+}$ substituted for La$^{3+}$ based on the mole ratio in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

Cu$_2$(CH$_3$CO$_2$)$_4$ is composed of four CH$_3$CO$_2^-$ coordinated to two Cu$^{2+}$ (Fig. 2A). Cu$_2$(CH$_3$CO$_2$)$_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four CH$_3$CO$_2^-$ and an axis passing through the two Cu$^{2+}$, all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of CH$_3$CO$_2^-$, a “cage complex” is formed. The cage complex Cu$_4$(L1L1L1)$_4$ is composed of planar dicarboxylate L1 (Fig. 2B) and Cu$^{2+}$ (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L1. Note that hydrogen atoms are not shown in Fig. 2.
C.1 The θ of the planar dicarboxylate L_2 below is fixed to 90°. If the composition of the cage complex formed from L_2 and Cu^{2+} is $\text{Cu}_n(L_2)_m$, give the smallest integer combination of n and m. Assume that only the CO$_2^-$ groups of L_2 form a coordination bond to Cu$^{2+}$ ions.
A zinc complex, $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$, contains four tetrahedral Zn^{2+}, six CH_3CO_2^-, and one O^{2-} (Fig. 3A). In $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of CH_3CO_2^- are oriented orthogonal relative to each other. When p-benzenedicarboxylate (Fig. 3B, L3, $\theta = 180^\circ$) is used instead of CH_3CO_2^-, the Zn^{2+} clusters are linked to each other to form a crystalline solid (X) that is called a “porous coordination polymer” (Fig. 3C). The composition of X is $[\text{Zn}_4\text{O}(\text{L3})_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

Fig. 3

C.2 X has a cubic unit cell with a side length of a (Fig. 3C) and a density of 0.592 g cm$^{-3}$. **Calculate** a in [cm].

C.3 X contains a considerable number of pores, and 1 g of X can accommodate 3.0×10^2 mL of CO_2 gas in the pores at 1 bar and 25 °C. **Calculate** the average number of CO_2 molecules per pore.
Вулкан на острове Сакурадзима

Часть A
Япония - страна с наибольшим количеством вулканов. Когда силикатные минералы кристаллизуются из магмы, часть ионов переходных металлов (\(M^{n+}\)) переходит из магмы в силикатные минералы. Ионы \(M^{n+}\), о которых идет речь в данной задаче, координированы оксид-ионами (\(O^{2-}\)) и находятся в четырехкоординированном тетраэдрическом окружении (\(T_d\)) в магме и шестикоординированном октаэдрическом (\(O_h\)) в силикатных минералах, в обоих случаях - в высокоспиновой электронной конфигурации. Коэффициент распределения (\(D\)) ионов \(M^{n+}\) между силикатным минералом и магмой определяется выражением:

\[
D = \frac{[M]_s}{[M]_l}
\]

где \([M]_s\) и \([M]_l\) - концентрации \(M^{n+}\) в силикатном минерале и магме, соответственно. В таблице ниже приведены значения \(D\) для \(Cr^{2+}\) и \(Mn^{2+}\) в качестве примера.

<table>
<thead>
<tr>
<th></th>
<th>(Cr^{2+})</th>
<th>(Mn^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>7.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Введем обозначения ΔO и CFSEO для энергии расщепления d-орбиталей M^{n+} и энергии стабилизации кристаллическим полем (ЭСКП) в поле O_h, соответственно. Аналогичные величины в поле T_d обозначим как ΔT и CFSET.

A.1 Рассчитайте $|\text{CFSE}^O - \text{CFSE}^T| = \Delta \text{CFSE}$ в единицах ΔO для Cr^{2+}, Mn^{2+} и Co^{2+}; примите, что $\Delta T = 4/9 \Delta O$.

A.2 График зависимости $ln D$ от $\Delta \text{CFSE} / \Delta O$ представляет собой прямую линию. Оцените D для Co^{2+}.

Оксиды металлов MO (M: Ca, Ti, V, Mn или Co) имеют структуру каменной соли, в которой ионы M^{n+} имеют O_h окружение и высокоспиновую электронную конфигурацию. Энергия кристаллической решетки этих оксидов в основном определяется кулоновским взаимодействием ионов, зависящим от радиусов и зарядов ионов, с небольшим вкладом CFSE иона M^{n+} в поле O_h.

A.3 Выберите подходящую строку энергий кристаллических решеток из вариантов (a)-(f).

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>TiO</th>
<th>VO</th>
<th>MnO</th>
<th>CoO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3460</td>
<td>3878</td>
<td>3913</td>
<td>3810</td>
<td>3916</td>
</tr>
<tr>
<td>(b)</td>
<td>3460</td>
<td>3916</td>
<td>3878</td>
<td>3810</td>
<td>3913</td>
</tr>
<tr>
<td>(c)</td>
<td>3460</td>
<td>3913</td>
<td>3916</td>
<td>3810</td>
<td>3878</td>
</tr>
<tr>
<td>(d)</td>
<td>3810</td>
<td>3878</td>
<td>3913</td>
<td>3460</td>
<td>3916</td>
</tr>
<tr>
<td>(e)</td>
<td>3810</td>
<td>3916</td>
<td>3878</td>
<td>3460</td>
<td>3913</td>
</tr>
<tr>
<td>(f)</td>
<td>3810</td>
<td>3913</td>
<td>3916</td>
<td>3460</td>
<td>3878</td>
</tr>
</tbody>
</table>
Часть B

Смешанный оксид A, содержащий ионы La$^{3+}$ и Cu$^{2+}$, имеет тетрагональную ячейку, показанную на рис. 1. В октаэдре [CuO$_6$], расстояние Cu–O вдоль оси z (l_z) больше, чем вдоль оси x (l_x), и геометрия фрагмента [CuO$_6$] отклоняется от идеальной O_h. Это искажение приводит к снятию вырождения орбиталей e_g ($d_{x^2−y^2}$ и d_{z^2}).

A может быть синтезировано путем термического разложения (пиролиза) комплексного соединения B, образующегося при растворении смеси хлоридов металлов в разбавленном растворе аммиака, содержащем квадратную кислоту C$_4$H$_2$O$_4$, являющуюся двухосновной. При нагревании B в сухом воздухе до 200 °C происходит уменьшение массы на 29.1% из-за потери кристаллизационной воды, а при дальнейшем нагревании до 700 °C происходит дополнительная потеря массы из-за выделения CO$_2$. Общая потеря массы при образовании A из B составляет 63.6%. В ходе пиролиза выделяются только вода и CO$_2$.

В.1 Напишите формулы веществ A и B.

В.2 Рассчитайте l_x и l_z по рис. 1.

В.3 Для Cu$^{2+}$ в искаженном октаэdre [CuO$_6$] в веществе A на рис. 1 запишите обозначения ($d_{x^2−y^2}$ и d_{z^2}) расщепленных e_g орбиталей в (i) и (ii) и изобразите распределение электронов по этим орбиталям в пунктирной рамочке в листе ответов.
A является изолятором. Если ион La$^{3+}$ заменить ионом Sr$^{2+}$, в кристаллической решетке образуется дырка, благодаря чему кристалл становится проводником. Поэтому допированное ионами Sr$^{2+}$ вещество A переходит в сверхпроводящее состояние ниже 38 К. В одном из случаев допирования A образовались дырки в концентрации $2.05 \times 10^{27} \text{ м}^{-3}$.

Часть C

Cu$_2$(CH$_3$CO$_2$)$_4$ состоит из четырех ионов CH$_3$CO$_2^-$, координированных двумя ионами Cu$^{2+}$ (рис. 2A). Cu$_2$(CH$_3$CO$_2$)$_4$ высокосимметричен: в нем есть две оси симметрии, проходящие через атомы углерода четырех ионов CH$_3$CO$_2^-$, и ось симметрии, проходящая через два иона Cu$^{2+}$, причем все эти три оси перпендикулярны друг другу. Если вместо CH$_3$CO$_2^-$ использовать дикарбоксилатный лиганд, образуется "каркасный комплекс". Каркасный комплекс Cu$_4$(L1)$_4$ состоит из плоского дикарбоксилата L1 (рис. 2B) и Cu$^{2+}$ (рис. 2C). Угол θ между направлениями координации двух карбоксилатов, показанными стрелками на рис. 2B, определяет структуру каркасного комплекса. Угол θ равен 0° для L1. Учтите, что атомы водорода на рис. 2 не показаны.

Рис. 2
Угол θ нижеприведенного плоского дикарбоксилата L_2 равен 90°. Обозначив состав образующегося из L_2 и Cu^{2+} каркасного комплекса как $Cu_n(L_2)_m$, определите наименьшие возможные целые значения n и m. Примите, что только группы CO_2^- лиганда L_2 образуют координационные связи с ионами Cu^{2+}.
Цинковый комплекс $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$ содержит четыре тетраэдрически координированных иона Zn^{2+}, шесть CH_3CO_2^- и один O^{2-} (Рис. 3А). В $\text{Zn}_4\text{O}(\text{CH}_3\text{CO}_2)_6$ ион O^{2-} находится в центре, а три оси, проходящие через атомы углерода ионов CH_3CO_2^-, перпендикулярны друг другу. Если использовать n-бензолдикарбоксилат (рис. 3В, L_3, $\theta = 180^\circ$) вместо CH_3CO_2^-, кластеры Zn^{2+} оказываются связанными друг с другом, и образуется твердое соединение (X), называемое "пористым координационным полимером" (рис. 3С). Вещество X имеет состав $[\text{Zn}_4\text{O}(\text{L}_3)_3]_n$, и кубическую кристаллическую решетку с порами нанометрового размера. Каждая пора изображена сферой на рис. 3Д, а каждый тетраэдрический кластер Zn^{2+} - темно-серым многогранником на рис. 3С и 3Д. Учтите, что атомы водорода на рис. 3 не показаны.

Рис. 3

<table>
<thead>
<tr>
<th>С.2</th>
<th>X имеет кубическую элементарную ячейку с длиной ребра a (рис. 3С) и плотностью 0.592 г см$^{-3}$. Рассчитайте a в см.</th>
</tr>
</thead>
</table>

| С.3 | X содержит значительное количество пор; 1 г X может поглотить до 3.0×10^2 мл CO_2 при 1 бар и 25 °C. **Рассчитайте** среднее число молекул CO_2, приходящихся на одну пору. |
Химия твердых соединений переходных металлов

Часть A

A.1 (6 pt)

\[
\text{Cr}^{2+} : \quad \Delta_{\text{D}}, \quad \text{Mn}^{2+} : \quad \Delta_{\text{D}}, \quad \text{Co}^{2+} : \quad \Delta_{\text{D}}
\]
A.2 (3 pt)

\[\ln D \]

\[\Delta CFSE / \Delta O \]

\[D : \] ________________

A.3 (3 pt)

Часть B

B.1 (6 pt)

A: _____________________, B: _____________________

B.2 (4 pt)

\[l_x = \quad \text{HM}, \quad l_z = \quad \text{HM} \]
B.3 (4 pt)

(i) : ________________________, (ii) : ________________________

![Energy Diagram]

B.4 (4 pt)
Часть C

C.1 (5 pt)

\[n = \quad , \quad m = \quad \]

C.2 (5 pt)

\[a = \quad \text{см} \]
C.3 (5 pt)
IChO
Problem 7
Cover sheet

Please return this cover sheet together with all the related question sheets.
Playing with Non-benzenoid Aromaticity

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Part A

Linearifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.
A.1 **Draw** the structures of 2 and 6 and clearly identify the stereochemistry where necessary.

Then, ketone 4 is converted into ester 15. Compound 8 (molecular weight: 188) retains all the stereocenters in 7. Compounds 9 and 10 have five stereocenters and no carbon-carbon double bonds. Assume
that $H_2^{18}O$ is used instead of $H_2^{16}O$ for the synthesis of ^{18}O-labelled-linearifolianones 13 and 14 from 11 and 12, respectively. Compounds 13 and 14 are ^{18}O-labelled isotopomers. Ignoring isotopic labelling, both 13 and 14 provide the same product 15 with identical stereochemistry.
A.2 Choose the appropriate structure for A.

I F₃C-S- OH
II F₃C-S-NH₂
III O=S-CF₃
IV O=S-CF₃

A.3 Draw the structures of 8–14 and clearly identify the stereochemistry where necessary. Also, indicate the introduced ¹⁸O atoms for 13 and 14 as shown in the example below.
Part B

Compound 19 is synthesized as shown below. In relation to non-benzenoid aromaticity, 19 can be used as an activator for alcohols, and 20 was converted to 22 via ion-pair intermediate 21. Although the formation of 21 was observed by NMR, 21 gradually decomposes to give 18 and 22.

$$
\begin{align*}
\text{16} & \xrightarrow{\text{Br}_2, \text{CH}_3\text{COOH}} 17 \\
\text{17} & \xrightarrow{\text{Et}_3\text{N}, \text{CH}_2\text{Cl}_2} 18 \\
\text{18} & \xrightarrow{\text{Cl}_2\text{S}_2\text{Cl}_2} 19 \\
\text{19} & \xrightarrow{-\text{HCl}} 21 \\
\text{20} & + 19 \quad \xrightarrow{-\text{HCl}} 21 \\
\text{21} & \xrightarrow{-\text{HCl}} \text{22} + 18
\end{align*}
$$

1H NMR (CD$_3$CN, ppm)
20: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)
21: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

B.1 **Draw** the structures of 17–19 and 21. Identifying the stereochemistry is not necessary.
Ароматичность небензоидного типа

<table>
<thead>
<tr>
<th></th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>В.1</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очки</td>
<td>5</td>
<td>2</td>
<td>19</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Оценка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Профессор Нозое (1902–1996) открыл направление исследований ароматических соединений небензоидного типа, которые сейчас широко представлены в органической химии.

Фотография из архива университета Тохоку.

Часть A

Линеарифолианон, природное соединение с уникальной структурой, был выделен из *Inula linariifolia*. Одностадийное превращение валенсена (1) дает 2, а трехстадийное превращение через интермедиат 3 приводит к кетону 4. Эремофилен (5) превращается в 6 по тому же четырехстадийному пути.
Изобразите структуры 2 и 6, четко указывая стереохимию, где это необходимо.

Далее кетон 4 превращается в сложный эфир 15. В соединении 8 (молекулярная масса: 188) сохраняются все стереоцентры, присутствующие в 7. Соединения 9 и 10 содержат по 5 стереоцентров и...
не содержат двойных связей углерод-углерод. Допустим, что $H_2^{18}O$ используют вместо $H_2^{16}O$ для синтеза ^{18}O-меченных-линейтрифолианонов 13 и 14 из 11 и 12, соответственно. Соединения 13 и 14 являются ^{16}O-меченными изотопомерами. Если не учитывать изотопный состав, 13 и 14 дают один и тот продукт 15 с идентичной стереохимией.
A.2 Выберите структуру A.

A.3 Изобразите структуры 8-14, четко указывая стереохимию, где это необходимо. Также отметьте атомы 18O, введенные в 13 и 14, как показано на примере ниже.
Часть B

Соединение 19 синтезируют, как показано ниже. В продолжение обсуждения ароматичности небензоидного типа, 19 может быть использован как активатор спиртов, а 20 был превращен в 22 с образованием интермедиата 21, представляющего из себя ионную пару. Хотя образование 21 было подтверждено ЯМР спектроскопией, 21 постепенно разлагается, давая 18 и 22.

\[
\text{16} \quad \text{Br}_2 \quad \text{CH}_3\text{COOH} \quad \text{17} \\
C_{15}H_{12}Br_2O
\]

\[
\text{Et}_3\text{N} \quad \text{CH}_2\text{Cl}_2 \quad \text{18} \\
C_{15}H_{10}O
\]

\[
\text{O} \quad \text{Cl}_2\text{S}Cl \quad \text{19} \\
C_{15}H_{10}Cl_2
\]

\[
\text{20} + \text{19} \quad \text{—HCl} \quad \text{21} \quad \text{22} + \text{18}
\]

1H NMR (CD3CN, ppm) 20: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H) 21: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

В.1 Изобразите структуры 17–19 и 21, четко указывая стереохимию, где это необходимо.
Ароматичность небензоидного типа

Часть A

<table>
<thead>
<tr>
<th>A.1 (5 pt)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (2 pt)</td>
<td>6 (3 pt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A.2 (2 pt)</th>
<th></th>
</tr>
</thead>
</table>
A.3 (19 pt)

8 (3 pt)

9 (2 pt)

10 (2 pt)

11 (2 pt)

12 (2 pt)

13 (4 pt)

14 (4 pt)
<table>
<thead>
<tr>
<th>№</th>
<th>Задание</th>
<th>Баллы</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

ЧАСТЬ В

В.1 (10 pt)

<table>
<thead>
<tr>
<th>№</th>
<th>Задание</th>
<th>Баллы</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Please return this cover sheet together with all the related question sheets.
Dynamic Organic Molecules and Their Chirality

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>26</td>
</tr>
</tbody>
</table>

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called \([n]\)carbohelicenes (here, \(n\) represents the number of six-membered rings) (see below). \([4]\)Carbohelicene (\([4]\)C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.
Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated \(\pi \) systems.

| A.1 | **Draw** the structures of A–C. Stereoisomers should be distinguished. | 9pt |
| A.2 | Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The \(^1H\) NMR chemical shifts of D are listed below. **Draw** the structure of D. | 3pt |

[D (\(\delta \), ppm in CS\(_2\), r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (M) or (P) as shown below.

[n]Carbohelicenes with \(n \) larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation
Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound **E** contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as \((P, P, P)\) as shown below.

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of **F**, \((P)-F\), multiple helicene **G** \((C_{66}H_{36})\) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of **G** formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and \(M\) and \(P\) labels according to the same numbering. For instance, the other stereoisomers of **E** should be listed as \((1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P),\) and \((M, P, M)\).
Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 Draw the structure of intermediate I (its stereochemistry is not required). 3pt
B.2 Starting from the optically active precursor \(J \), the same reaction sequence gives the optically active sumanene derivative \(K \). The stereocenters in \(J \) suffer no inversion during the metathesis reaction. **Draw** the structure of \(K \) with the appropriate stereochemistry.
Динамические органические молекулы и их хиральность

<table>
<thead>
<tr>
<th>Вопрос</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>B.1</th>
<th>B.2</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очки</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Оценка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Часть A
Фотохимическая реакция протекает аналогично следующему примеру:

Внимание: при ответе на все вопросы Задачи 8 используйте чередующиеся одинарные и двойные связи, как показано в примерах с карбогелиценами. Не используйте кружки для обозначения сопряженных \(\pi \)-систем.

<table>
<thead>
<tr>
<th>A.1</th>
<th>Изобразите структурные формулы соединений A–C. Стереоизомеры должны быть различимы.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[D ((\delta), м.д., в CS(_2), комн.темп.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]</td>
</tr>
</tbody>
</table>

[5]- и более крупные \([n]\)карбогелициены обладают спиральной хиральностью, а взаимное превращение энантиомеров этих гелиценов протекает достаточно медленно при комнатной температуре. Конфигурацию хиральных \([n]\)карбогелициенов обозначают буквам (M) и (P), как показано ниже.
[n]Карбогелициены с \(n \) больше 4 могут быть разделены на энантиомеры с помощью хиральной колоночной хроматографии, разработанной профессором Йошио Окамото.

Фото любезно предоставлено The Japan Prize Foundation

![Diagram of molecule E](image)

\((1, 2, 3) = (P, P, P)\)

A.3 Никель-катализируемая тримеризация 1,2-д dibrombenзола приводит к образованию трифенилена. Если ту же реакцию использовать для одного из энантиомеров \(F\), \((P)\)-F, образуется множественный гелицен \(G\) \((C_{66}H_{36})\). Принимая, что стереоизомеры не могут взаимопревращаться в ходе реакции, установите все стереоизомеры \(G\), образование которых возможно в данном процессе. Не допускайте повторов. Для справки: один из изомеров должен быть нарисован полностью со стереохимией, обозначенной как в приведенном выше примере, а также числовыми метками; другие стереоизомеры должны быть перечислены с номерами позиций и обозначениями \(M\) и \(P\) в соответствии с той же нумерацией. Например, другие стереоизомеры соединения \(E\) должны быть перечислены как \((1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), (M, P, M)\).
Часть В

Суманен - это углеводород в форме чаши, о котором впервые сообщили в Японии в 2003 году. Название “суманен” происходит от санскритского “суман” - подсолнух.

Синтез суманена был осуществлен посредством последовательности реакций, включающей метатезис с раскрытием кольца и метатезис с замыканием кольца.

Типичные примеры реакций метатезиса, катализируемых рутениевыми катализаторами (Ru*), представлены ниже.

В.1 Изобразите структурную формулу интермедиата I (без стереохимии). 3pt
Если использовать в качестве исходного вещества оптически активное соединение J, то аналогичная последовательность реакций приведет к образованию оптически активного производного суманена K. Стереоцентры в соединении J не претерпевают обращения в ходе реакции метатезиса. Изобразите структурную формулу соединения K с указанием стереохимии.
Динамические органические молекулы и их хиральность

Часть A

A.1 (9 pt)

A (3 pt) B (3 pt) C (3 pt)

A.2 (3 pt)
A.3 (7 pt)
Часть B

В.1 (3 pt)

В.2 (4 pt)
Please return this cover sheet together with all the related question sheets.
Likes and Dislikes of Capsule

<table>
<thead>
<tr>
<th>Question</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
</tbody>
</table>

Score

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds 1 and 2 were synthesized as U-shaped molecules with different sizes. Compound 3 was prepared as a comparison of 1 and the encapsulation behavior of these compounds was investigated.
The synthetic route to 2 is shown below. The elemental composition of compound 9: C; 40.49%, H; 1.70%, and O; 17.98% by mass.
A.1 **Draw** the structures of 4-9; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of p-methoxybenzyl group shown in the scheme above.

In the mass spectrum of 1, the ion peak corresponding to its dimer (1₂) was clearly observed, whereas an ion peak for 3₂ was not observed in the spectrum of 3. In the ¹H NMR spectra of a solution of 1₂, all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3. These data indicate that hydrogen bonds are formed between the NH moieties of 1 and atoms X of another molecule of 1 to form the dimeric capsule.

A.2 **Circle** all the appropriate atom(s) X in 1.

A.3 **Give** the number of the hydrogen bonds in the dimeric capsule (1₂).
The dimeric capsule of 1 (I₂) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

\[Z + 1₂ → Z@1₂\]

(1)

The equilibrium constant of the encapsulation of Z into 1₂ is given as below:

\[K_a = \frac{[Z@1₂]}{[Z][1₂]}\]

(2)

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1₂ in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound 2 also forms a rigid and larger dimeric capsule (2₂). The ¹H NMR spectrum of 2₂ was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H₉ proton of 2 in the above solvents are summarized below, and no other signals from the H₉ in 2, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

<table>
<thead>
<tr>
<th>solvent</th>
<th>δ (ppm) of H₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆D₆</td>
<td>4.60</td>
</tr>
<tr>
<td>C₆D₅F</td>
<td>4.71</td>
</tr>
<tr>
<td>C₆D₆/C₆D₅F</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 Determine the number of C₆D₆ and C₆D₅F molecules encapsulated in 2₂ giving each H₉ signal.

3pt
\(^1\)H NMR measurements in C\(_6\)D\(_6\) revealed that 2, can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (\(K_a\)) which are expressed below were determined for various temperatures. [solvent@2,] denotes a species containing one or more solvent molecules.

\[
K_a = \frac{[Z@2_2]}{[Z][solvent@2_2]}
\]

Similarly, the \(K_a\) values of CH\(_4\) and 1 given as eq (2) at various temperatures in C\(_6\)D\(_6\) were also determined by \(^1\)H NMR measurements. The plots of the two association constants (as ln \(K_a\) vs 1/T) are shown below.

No C\(_6\)D\(_6\) molecule is encapsulated in 1, In line II, the entropy change (\(\Delta S\)) is (1) and enthalpy change (\(\Delta H\)) is (2), indicating that the driving force for the encapsulation in line II is (3). Therefore, line I corresponds to (4), and line II corresponds to (5).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(2)</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>(3)</td>
<td>(\Delta S)</td>
<td>(\Delta H)</td>
</tr>
<tr>
<td>(4)</td>
<td>1, and CH(_4)</td>
<td>2, and AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1, and CH(_4)</td>
<td>2, and AdA</td>
</tr>
</tbody>
</table>
Что капсулы любят, а что нет

<table>
<thead>
<tr>
<th>Вопрос</th>
<th>A.1</th>
<th>A.2</th>
<th>A.3</th>
<th>A.4</th>
<th>A.5</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очки</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Оценка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Если вы разрежете теннисный мячик, то сможете разобрать его на две U-образные части (хорошие дети так не делают).

Руководствуясь этой идеей, синтезировали соединения 1 и 2, являющиеся U-образными молекулами различного размера. Соединение 3 было получено для сравнения с соединением 1. Было исследовано поведение этих соединений в процессах инкапсулирования.
Путь синтеза соединения 2 приведен ниже. Элементный состав соединения 9: C; 40.49%, H; 1.70%, O; 17.98% по массе.

\[
\begin{align*}
\text{Бутадиенсульфоцианат} + 2 \times \text{Бензол} & \xrightarrow{H^+} \text{Винильовый эфир} \\
\text{Циклогексан} & \xrightarrow{\text{Pd/C, H}_2} \text{Соединение 6} \\
\text{Соединение 6} + 4 \times \text{Бензоилфенол} & \xrightarrow{\Delta} \text{Соединение 7} \\
\text{Соединение 7} & \xrightarrow{H^+} \text{Соединение 8} \\
\text{Соединение 8} & \xrightarrow{\text{Cl} = \text{COCl}} \text{Соединение 9} \\
\text{Соединение 9} & \xrightarrow{\text{С.} 40.49\%, \text{H:} 1.70\%, \text{O:} 17.98\%} \text{Соединение 2}
\end{align*}
\]
A.1 Изобразите структурные формулы соединений 4-9; стереохимию можно не указывать. Используйте обозначение “PMB” вместо полной структуры пара-метоксибензильной группы, как показано в примере выше.

В масс-спектре соединения 1 пик, соответствующий его димеру (1₂), четко виден, в то время как в масс-спектре 3 пик димера 3₂ отсутствует. В ¹H ЯМР спектре раствора 1₂, все NH протоны из 1 являются химически эквивалентными, а их химический сдвиг существенно отличается от химического сдвига NH протонов соединения 3. Эти данные указывают на наличие водородных связей между группами NH одной молекулы 1 и атомами X другой молекулы 1, образующих вместе димерную капсулу.

A.2 Обведите кружком все подходящие атомы(атом) X в 1.

A.3 Приведите число водородных связей в димерной капсуле (1₂).
Димерная капсула \(I_2 \) имеет внутреннее пространство, в которое может быть инкапсулирована малая молекула \(Z \). Это явление можно описать следующим уравнением:

\[
Z + I_2 \rightarrow Z@I_2
\]

Выражение для константы равновесия процесса инкапсулирования \(Z \) в \(I_2 \) приведено ниже:

\[
K_a = \frac{[Z@I_2]}{[Z][I_2]}
\]

Инкапсулирование можно изучать с помощью ЯМР-спектроскопии. Например, \(I_2 \) в \(C_6D_6 \) дает различные сигналы в \(^1H \) ЯМР спектре до и после добавления \(CH_4 \).

Соединение \(2 \) также образует жесткую димерную капсулу большего размера (\(2_2 \)). \(^1H \) ЯМР спектр \(2_2 \) был зарегистрирован в \(C_6D_6, C_6D_5F, \) и в смеси растворителей \(C_6D_6/C_6D_5F, \) причем все остальные условия были одинаковы. Химические сдвиги \(H^a \) протонов соединения \(2 \) в указанных растворителях приведены ниже. Никаких других сигналов протонов \(H^a \) в \(2 \), кроме перечисленных, не наблюдалось. Считайте, что внутреннее пространство капсулы всегда заполнено максимально возможным числом молекул растворителя, а каждый сигнал соответствует одному из способов заполнения капсулы.

<table>
<thead>
<tr>
<th>растворитель</th>
<th>(\delta) (м.д.) (H^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_6D_6)</td>
<td>4.60</td>
</tr>
<tr>
<td>(C_6D_5F)</td>
<td>4.71</td>
</tr>
<tr>
<td>(C_6D_6 / C_6D_5F)</td>
<td>4.60, 4.71, 4.82</td>
</tr>
</tbody>
</table>

A.4 Определите число молекул \(C_6D_6 \) и \(C_6D_5F, \) инкапсулированных в \(2_2 \), соответствующее каждому сигналу \(H^a \).
I ЯМР измерения в C₆D₆ показали, что 2 может инкапсулировать одну молекулу 1-адамантанкарбоновой кислоты (AdA). Константа ассоциации (Kₐ), выражение для которой представлено ниже, была измерена при разных температурах. Обозначение [solvent@2] соответствует концентрации частиц, содержащих одну или несколько молекул растворителя.

\[
K_a = \frac{[Z@2]}{[Z][solvent@2]}
\]

Аналогично, значения Kₐ для CH₄ и 1 из выражения (2) были измерены при разных температурах в C₆D₆ с помощью ¹H ЯМР спектроскопии. Графики температурной зависимости для двух констант ассоциации (в координатах ln Kₐ от 1/T) показаны ниже.

1 не инкапсулирует молекул C₆D₆. Для линии II изменение энтропии ΔS _____ (1), изменение энтальпии ΔH _____ (2), поэтому движущей силой инкапсулирования для линии II является _____ (3). Следовательно, линия I соответствует _____ (4), а линия II соответствует _____ (5).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>положительно</td>
<td>отрицательно</td>
</tr>
<tr>
<td>(2)</td>
<td>положительно</td>
<td>отрицательно</td>
</tr>
<tr>
<td>(3)</td>
<td>ΔS</td>
<td>ΔH</td>
</tr>
<tr>
<td>(4)</td>
<td>1 и CH₄</td>
<td>2 и AdA</td>
</tr>
<tr>
<td>(5)</td>
<td>1 и CH₄</td>
<td>2 и AdA</td>
</tr>
<tr>
<td>A.1 (13 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 (2 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (3 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (2 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 (2 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (2 pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 (2 pt)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.2 (2 pt)

![Chemical Structure Image]

A.3 (2 pt)

A.4 (3 pt)

<table>
<thead>
<tr>
<th>δ (м.д.) H^3</th>
<th>число молекул C_6D_6</th>
<th>число молекул $\text{C}_6\text{D}_5\text{F}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.60 м.д.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.71 м.д.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.82 м.д.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.5 (3 pt)

(1) : (2) : (3) : __________

(4) : (5) : __________