
IChO General instructions Cover sheet

Please return this cover sheet together with all the related question sheets.

GO-1
English (Official)

International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org

General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has 9 problems.
- You can solve the problems in any order.
- You will have **5 hours** to solve all problems.
- You can **begin** working only after the **START** command is given.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

	Title	Total Score	Percentage
1	Hydrogen at a Metal Surface	24	11
2	Isotope Time Capsule	35	11
3	Lambert–Beer Law?	22	8
4	The Redox Chemistry of Zinc	32	11
5	Mysterious Silicon	60	12
6	The Solid-State Chemistry of Transition Metals	45	13
7	Playing with Non-benzenoid Aromaticity	36	13
8	Dynamic Organic Molecules and Their Chirality	26	11
9	Likes and Dislikes of Capsules	23	10
		Total	100

Physical Constants and Equations

Constants

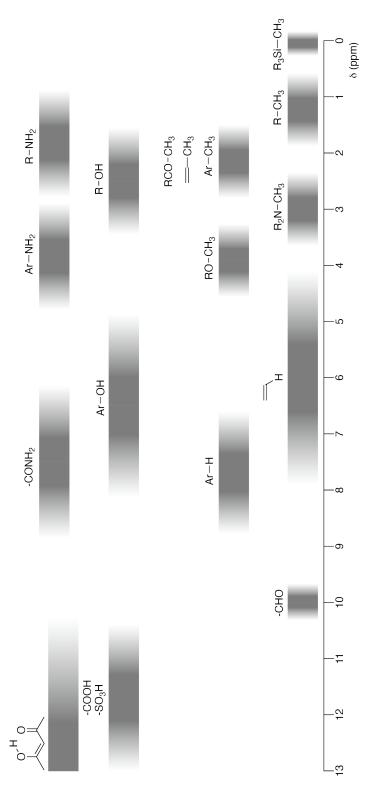
Speed of light in vacuum	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \mathrm{J} \; \mathrm{s}$
Elementary charge	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Electric constant (permittivity of vacuum)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F \ m^{-1}}$
Avogadro constant	$N_{\rm A} = 6.02214076 \times 10^{23}{ m mol^{-1}}$
Boltzmann constant	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J \ K^{-1}}$
Faraday constant	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gas constant	$R = N_{\rm A} \times k_{\rm B} = 8.31446261815324~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
das constant	$= 8.2057366081 \times 10^{-2}\mathrm{L\ atm\ K^{-1}\ mol^{-1}}$
Unified atomic mass unit	$u = 1 Da = 1.66053907 \times 10^{-27} kg$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{\sf atm} = 1.01325 \times 10^5 \sf Pa$
Zero degree Celsius	$0^{\circ}\text{C} = 273.15\text{K}$
Ångstrom	$1 \text{Å} = 10^{-10} \text{m}$
Picometer	$1 pm = 10^{-12} m$
Electronvolt	$1 \text{eV} = 1.602176634 \times 10^{-19} \text{J}$
Part-per-million	$1 ppm = 10^{-6}$
Part-per-billion	$1 ppb = 10^{-9}$
Part-per-trillion	$1 ppt = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

GO-4
English (Official)

Equations

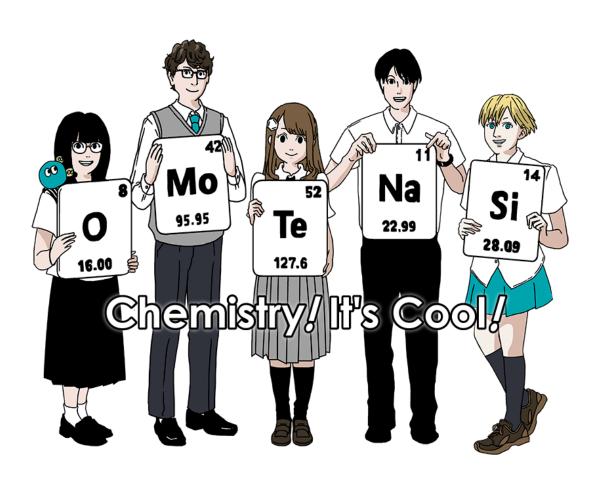
The ideal gas law	PV = nRT
	, where P is the pressure, V is the volume, n is the amount of substance,
	T is the absolute temperature of ideal gas.
Coulomb's law	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, where F is the electrostatic force, $k_{\rm e} (\simeq 9.0 \times 10^9 {\rm N m^2 C^{-2}})$ is Coulomb's
	constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance
	between the charges.
The first law of thermo-	$\Delta U = q + w$
dynamics	, where ΔU is the change in the internal energy, q is the heat supplied, w
	is the work done.
Enthalpy H	H = U + PV
Entropy based on Boltz-	$S = k_{B} \ln W$
mann's principle S	, where W is the number of microstates.
The change of entropy	$\Delta S = \frac{q_{rev}}{T}$
ΔS	, where $\stackrel{1}{q_{rev}}$ is the heat for the reversible process.
Gibbs free energy G	G = H - TS
	$\Delta_{r}G^{\circ} = -RT \ln K = -zFE^{\circ}$
	, where K is the equilibrium constant, z is the number of electrons, E° is
	the standard electrode potential.
Reaction quotient Q	$\Delta_{r}G = \Delta_{r}G^{\circ} + RT \ln Q$
	For a reaction
	$aA + bB \rightleftharpoons cC + dD$
	$Q = rac{\left[C ight]^c \left[D ight]^d}{\left[A ight]^a \left[B ight]^b}$
	$^{arphi}=\left[A ight]^{a}\left[B ight]^{b}$
	, where [A] is the concentration of A.
-	

Heat change Δq	$\Delta q = n c_{m} \Delta T$
	, where c_{m} is the temperature-independent molar heat capacity.
Nernst equation for redox reaction	$E=E^\circ+\frac{RT}{zF}\ln\frac{C_{\rm ox}}{C_{\rm red}}$, where $C_{\rm ox}$ is the concentration of oxidized substance, $C_{\rm red}$ is the concentration of reduced substance.
Arrhenius equation	$k=A\exp\left(-\frac{E_a}{RT}\right)$, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy. $\exp(x)=e^x$
Lambert–Beer equation	$A=\varepsilon lc$, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.
Henderson–Hasselbalch equation	For an equilibrium $\begin{aligned} HA &\rightleftharpoons H^+ + A^- \\ , where equilibrium constant is K_a, \\ pH &= p K_a + log \left(\frac{[A^-]}{[HA]} \right) \\ E &= h \nu = h \frac{c}{\lambda} \end{aligned}$
Energy of a photon	$E=h u=hrac{c}{\lambda}$, where $ u$ is the frequency, λ is the wavelength of the light.
The sum of a geometric series	When $x \neq 1$, $1+x+x^2+\cdots+x^n=\textstyle\sum_{i=0}^n x^i=\frac{1-x^{n+1}}{1-x}$
Approximation equation that can be used to solve problems	When $x \ll 1$, $\frac{1}{1-x} \simeq 1+x$


G0-6 English (Official)

Periodic Table

18	2	e L	4.003	10	Ne	Neon	20.180	18	Ā	Argon 39.948	36	궃	Krypton 83.798	54	Xe	Xenon	131.293	98	듄	Radon [222]	118	o	Oganesson [294]							
17				6	ш	Fluorine	18.998	17	ਠ	Chlorine 35.452	35	à	Bromine 79.904	23	_	lodine	126.904	82	Αt	Astatine [210]	117	Ls	Tennessine [293]	71	3	Lutetium	174.967	103	ئ	Lawrencium [262]
16				8	0	Oxygen	15.999	16	S	Sulfur 32.068	34	Se	Selenium 78.971	52	Te	Tellurium	127.60	84	Po	Polonium [210]	116		Livermorium [293]	70	Υp	Ytterbium	173.045	102	2	Nobelium [259]
15				7	z	Nitrogen	14.007	15	₾	Phosphorus 30.974	33	As	Arsenic 74.922	51	Sb	Antimony	121.760	83	Ξ	Bismuth 208.98	115	Mc	Moscovium [289]	69	T	Thulium	168.934	101	Md	Mendelevium [258]
14				9	O	Carbon	12.011	14	S	Silicon 28.085	32	Ge	Germanium 72.630	20	Sn	Ħ	118.710	82	Ъ	Lead 207.2	114	正	Flerovium [289]	89	ш	Erbium	167.259	100	F	Fermium [257]
13				2	В	Boron	10.814	13	₹	Aluminium 26.982	31	Ga	Gallium 69.723	49	드	Indium	114.818	81	F	Thallium 204.384	113	Ę	Nihonium [278]	29	웃	Holmium	164.930	66	Ë	Einsteinium [252]
12											30	Zn	Zinc 65.38	48	ප	Cadmium	112.414	80	F	Mercury 200.592	112	ర్	Copernicium [285]	99	ο	Dysprosium	162.500	86	℧	Californium [252]
11							atomic weight [in parenthesis for the radioactive element]				53	D O	Copper 63.546	47	Ag	Silver	107.868	62	An	Gold 196.967	111	Rg	Roentgenium [280]	99	ТР	Terbium	158.925	26	益	Berkelium [247]
10							s for the radios				28	Z	Nickel 58.693	46	Pd	Palladium	106.42	78	풉	Platinum 195.084	110	Ds	Darmstadtium [281]	64	Gd	Gadolinium	157.25	96	S	Curium [247]
6							[in parenthesi				27	රි	Cobalt 58.933	45	뜐	Rhodium	102.906	77	<u>-</u>	Iridium 192.217	109	¥	Meitnerium [276]	63	Ш	Europium	151.964	98	Am	Americium [243]
8				atomic number	Symbol	name	atomic weight				26	Fe	lron 55.845	44	Ru	Ruthenium	101.07	9/	SO	Osmium 190.23	108	۲R	Hassium [277]	62	Sm	Samarium	150.36	94	Pu	Plutonium [239]
7			Key:	113	Z	Nihonium	[278]				25	M	Manganese 54.938	43	٦ ۲	Technetium	[66]	75	Re	Rhenium 186.207	107	뮵	Bohrium [272]	61	Pm	Promethium	[145]	83	Š	Neptunium [237]
9											24	ဝံ	Chromium 51.996	42	Mo	Molybdenum	95.95	74	>	Tungsten 183.84	106	Sg	Seaborgium [271]	09	P		144.242	95		Uranium 238.029
5											23	>	Vanadium 50.942	41	g	Niobium	92.906	73	Д	Tantalum 180.948	105	8	Dubnium [268]	69	፵	Praseodymium	140.908	91	Ра	Protactinium 231.036
4											22	j=	Titanium 47.867	40	Zr	Zirconium	91.224	72	士	Hafhium 178.49	104	莅	Rutherfordium [267]	28		Cerinm	16	06	드	Thorium 232.038
3											21	သွ	Scandium 44.956	39	>	Yttrium	88.906	57-71	La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids	57	Ľa	Lanthanum	138.905	68		Actinium [227]
2				4	Be	Beryllium	9.012	12	Mg	Magnesium 24.306	20	Ca	Calcium 40.078	38	Š	Strontium	87.62	99	Ва	Barium 137.327	88	Ra	Radium [226]	57-71	La-Lu	Lanthanoids		89-103	Ac-Lr	Actinoids
-	- :	E .	1.008	8	'	Lithium	6.968	11	Na	Sodium 22.990	19	¥	Potassium 39.098	37	В	Rubidium	85.468	22	ပ	Caesium 132.905	87	亡	Francium [223]							



¹H NMR Chemical Shifts

GO-1 Bengali (Bangladesh)

General Instruction

IChO

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has 9 problems.
- You can solve the problems in any order.
- You will have **5 hours** to solve all problems.
- You can **begin** working only after the **START** command is given.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

	Title	Total Score	Percentage
1	Hydrogen at a Metal Surface	24	11
2	Isotope Time Capsule	35	11
3	Lambert–Beer Law?	22	8
4	The Redox Chemistry of Zinc	32	11
5	Mysterious Silicon	60	12
6	The Solid-State Chemistry of Transition Metals	45	13
7	Playing with Non-benzenoid Aromaticity	36	13
8	Dynamic Organic Molecules and Their Chirality	26	11
9	Likes and Dislikes of Capsules	23	10
		Total	100

Physical Constants and Equations

Constants

Speed of light in vacuum	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \text{J s}$
Elementary charge	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31} {\rm kg}$
Electric constant (permittivity of vacuum)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F \ m^{-1}}$
Avogadro constant	$N_{\rm A} = 6.02214076 \times 10^{23}{ m mol^{-1}}$
Boltzmann constant	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J \ K^{-1}}$
Faraday constant	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gas constant	$R = N_{\rm A} \times k_{\rm B} = 8.31446261815324 {\rm J \ K^{-1} \ mol^{-1}}$
Gas constant	$= 8.2057366081 \times 10^{-2} \mathrm{L \ atm \ K^{-1} \ mol^{-1}}$
Unified atomic mass unit	$u=1{\sf Da}=1.66053907\times 10^{-27}{\sf kg}$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{atm} = 1.01325 \times 10^5 Pa$
Zero degree Celsius	$0^{\circ}\text{C} = 273.15\text{K}$
Angstrom	$1 \text{Å} = 10^{-10} \text{m}$
Picometer	$1 pm = 10^{-12} m$
Electronvolt	$1 \text{eV} = 1.602176634 \times 10^{-19} \text{J}$
Part-per-million	$1 ppm = 10^{-6}$
Part-per-billion	$1 ppb = 10^{-9}$
Part-per-trillion	$1 ppt = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

GO-4

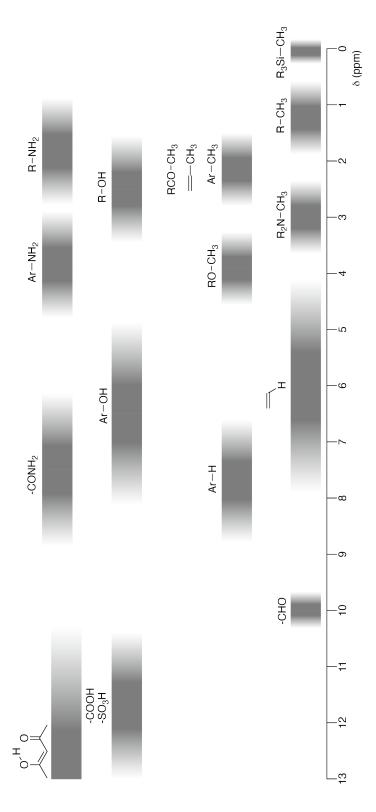
Bengali (Bangladesh)

Equations

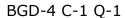
PV = nRT
, where P is the pressure, V is the volume, n is the amount of substance,
T is the absolute temperature of ideal gas.
$F = k_e \frac{q_1 q_2}{r^2}$
, where F is the electrostatic force, $k_{\rm e} (\simeq 9.0 \times 10^9 {\rm N m^2 C^{-2}})$ is Coulomb's
constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance
between the charges.
$\Delta U = q + w$
, where ΔU is the change in the internal energy, q is the heat supplied, w
is the work done.
H = U + PV
$S = k_{B} \ln W$
, where W is the number of microstates.
$\Delta S = rac{q_{rev}}{T}$
, where $q_{\sf rev}$ is the heat for the reversible process.
G = H - TS
$\Delta_{ m r} G^{\circ} = -RT \ln K = -zFE^{\circ}$
, where K is the equilibrium constant, z is the number of electrons, E° is
the standard electrode potential.
$\Delta_{ m r}G = \Delta_{ m r}G^\circ + RT \ln Q$
For a reaction
$aA + bB \underset{c}{\rightleftharpoons} cC + dD$
$Q = \frac{\left[C\right]^{c}\left[D\right]^{d}}{\left[A\right]^{a}\left[B\right]^{b}}$
, where [A] is the concentration of A.

Heat change Δq	$\Delta q = n c_{m} \Delta T$
	, where c_{m} is the temperature-independent molar heat capacity.
Nernst equation for	$E=E^{\circ}+rac{RT}{zF} \ln rac{C_{ox}}{C_{red}}$
redox reaction	, where $C_{ m ox}$ is the concentration of oxidized substance, $C_{ m red}$ is the
	concentration of reduced substance.
Arrhenius equation	$k = A \exp\left(-\frac{E_a}{RT}\right)$
	, where k is the rate constant, A is the pre-exponential factor, E_a is the
	activation energy.
	$\exp(x) = e^x$
Lambert–Beer equation	$A = \varepsilon lc$
	, where A is the absorbance, ε is the molar absorption coefficient, l is the
	optical path length, \emph{c} is the concentration of the solution.
Henderson–Hasselbalch	For an equilibrium
equation	$HA \rightleftharpoons H^+ + A^-$
	, where equilibrium constant is K_{a} ,
	$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$ $E = h\nu = h\frac{c}{\lambda}$
Energy of a photon	$E = h\nu = h\frac{c}{\lambda}$
	, where $ u$ is the frequency, λ is the wavelength of the light.
The sum of a geometric	When $x \neq 1$,
series	$1 + x + x^2 + \dots + x^n = \sum_{i=0}^n x^i = \frac{1 - x^{n+1}}{1 - x}$
Approximation	When $x \ll 1$,
equation that can be used to solve problems	$\frac{1}{1-x} \simeq 1 + x$

G0-6 Bengali (Bangladesh)

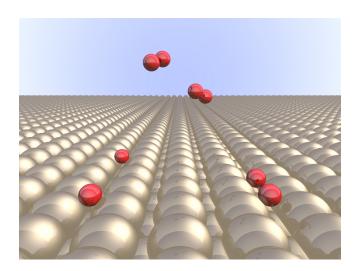

Periodic Table

18	²	Helium 4.003	10	Ne	Neon	20.180	18	Ā	Argon 39.948	36	궃	Krypton 83.798	54	Xe	Xenon	131.293	98	R	Radon [222]	118	og	Oganesson [294]							
17			6	ட	Fluorine	18.998	17	రె	Chlorine 35.452	35	ă	Bromine 79.904	23	_	lodine	126.904	82	Ą	Astatine [210]	117	s L	Tennessine [293]	71	ŋ	Lutetium	174.967	103	ځ	Lawrencium [262]
16			8	0	Oxygen	15.999	16	တ	Sulfur 32.068	34	Se	Selenium 78.971	52	Те	Tellurium	127.60	84	Ъо	Polonium [210]	116	۲	Livermorium [293]	70	Х	Ytterbium	173.045	102	8	Nobelium [259]
15			7	z	Nitrogen	14.007	15	Д	Phosphorus 30.974	33	As	Arsenic 74.922	51	Sp	Antimony	121.760	83	洒	Bismuth 208.98	115	Mc	Moscovium [289]	69	H	Thulium	168.934	101	Md	Mendelevium [258]
14			9	ပ	Carbon	12.011	14	Si	Silicon 28.085	32	Ge	Germanium 72.630	20	Su	Ħ	118.710	82	Ъ	Lead 207.2	114	正	Flerovium [289]	89	Щ	Erbium	167.259	100	FB	Fermium [257]
13			S	В	Boron	10.814	13	₹	Aluminium 26.982	31	Ga	Gallium 69.723	49	드	Indium	114.818	81	F	Thallium 204.384	113	Z	Nihonium [278]	29	운		164.930	66	Es	Einsteinium [252]
12						_				30	Zu	Zinc 65.38	48	ප	Cadmium	112.414	88	롼	Mercury 200.592	112	ပ်	Copernicium [285]	99	ò	Dysprosium	162.500	86	రే	Californium [252]
11						atomic weight [in parenthesis for the radioactive element]				59	రె	Copper 63.546	47	Ag	Silver	107.868	62	Αn	Gold 196.967	11	Вд	Roentgenium [280]	99	P P	Terbium	158.925	26	益	Berkelium [247]
10						is for the radio				58	Z	Nickel 58.693	46	Pd	Palladium	106.42	78	풉	Platinum 195.084	110	മ	Darmstadtium [281]	64	gq	Gadolinium	157.25	96	S	Curium [247]
6						t [in parenthes				27	රි	Cobalt 58.933	45	뜐	Rhodium	102.906	77	<u>-</u>	Iridium 192.217	109	₹	Meitnerium [276]	63	Ш	Europium	151.964	96	Am	Americium [243]
8			atomic number	Symbol	name	atomic weigh				56	Ьe	lron 55.845	44	R	Ruthenium	101.07	9/	SO	0smium 190.23	108	완	Hassium [277]	62	Sm	Samarium	150.36			Plutonium [239]
7		Key:	113	£	Nihonium	[278]				25	M	Manganese 54.938	43	ည	Technetium	[66]	75	Re	Rhenium 186.207	107	뮵	Bohrium [272]	61	Pm	Promethium	[145]	93	오	Neptunium [237]
9										24	ဝံ	Chromium 51.996	42	Mo	Molybdenum	95.95	74	≥	Tungsten 183.84	106	Sg	Seaborgium [271]	09			144.242	95		Uranium 238.029
2										83	>	Vanadium 50.942	14	g	Niobium	92.906	73	Та	Tantalum 180.948	105		Dubnium [268]	59	Ą	Praseodymium	140.908	91	Ра	Protactinium 231.036
4										22	j=	Titanium 47.867	40	Zr	Zirconium	91.224	72	Ξ	Hafnium 178.49	104	茬	Rutherfordium [267]	28			140.116	06	드	Thorium 232.038
3			_				_			21	Sc	Scandium 44.956	39	>	Yttrinm	88.906	57-71	La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids			Lanthanum	138.905	68	Ac	Actinium [227]
2			4	Be	Beryllium	9.012	12	Mg	Magnesium 24.306	20	Sa	calcium 40.078	38	ഗ്	Strontium	87.62	99	Ва	Barium 137.327	88	Ra	Radium [226]	57-71	La-Lu	Lanthanoids		89-103	Ac-Lr	Actinoids
1	- T	Hydrogen 1.008	б	=	Lithium	6.968	=	Na	Sodium 22.990	19	¥	Potassium 39.098	37	윤	Rubidium	85.468	22	ర	Caesium 132.905	87	ъ̀	Francium [223]							



¹H NMR Chemical Shifts

IChO Problem 1 Cover sheet


Please return this cover sheet together with all the related question sheets.

Hydrogen at a Metal Surface

		11	l % of th	e total			
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total
Points	6	4	5	3	3	3	24
Score							

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $H_2(g) \to 2H(ad)$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of K1 per mole of K2. The solid line spacing is 20 K3 mol $^{-1}$ 1, the dashed line spacing is 100 K3 mol $^{-1}$ 2, and the spacing between solid and dashed lines is 80 K3 mol $^{-1}$ 1. The zero-point vibration energy is ignored.

IChO

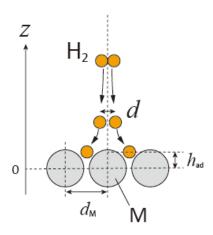


Fig.1 Definition of variables. Drawing is not in scale.

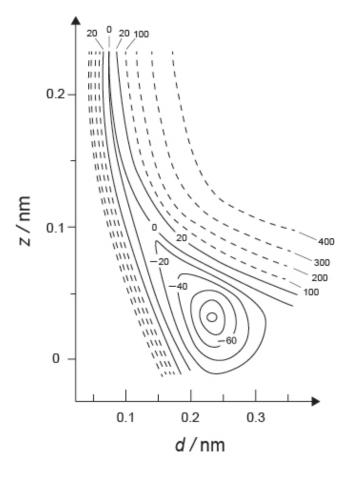


Fig.2

A.1 For each of the following items (i)–(iii), **select** the closest value from A–G. 6pt

- (i) The interatomic distance for a gaseous H₂ molecule
- (ii) The interatomic distance between metal atoms ($d_{\rm M}$ in Fig. 1) (iii) The distance of adsorbed H atoms from the surface ($h_{\rm ad}$ in Fig. 1)

A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2 For each of the following items (i)–(ii), **select** the closest value from A–H. 4pt

(i) the energy required for the dissociation of gaseous H₂ to gaseous H

 $[H_2(g) \to 2 \overline{H}(g)]$

(ii) the energy released during the adsorption of a gaseous H_2 [$H_2(g) \rightarrow 2H(ad)$]

A. 20 kJ mol⁻¹ C. 60 kJ mol⁻¹ B. $40 \text{ kJ} \text{ mol}^{-1}$ D. $100 \text{ kJ} \text{ mol}^{-1}$ H. $400 \text{ kJ} \text{ mol}^{-1}$ E. 150 kJ mol⁻¹ F. 200 kJ mol⁻¹ G. $300 \text{ kJ} \text{ mol}^{-1}$

Q1-4
English (Official)

Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

$$H_2(g) \underset{k_2}{\overset{k_1}{\rightleftharpoons}} 2H(ad) \tag{1a}$$

$$H(ad) \xrightarrow{k_3} H(ab)$$
 (1b)

The reaction rates per surface site for adsorption, desorption, and absorption are $r_1[s^{-1}], r_2[s^{-1}]$ and $r_3[s^{-1}]$, respectively. They are expressed as:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

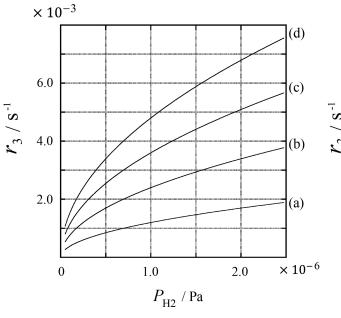
$$r_2 = k_2 \theta^2 \tag{3}$$

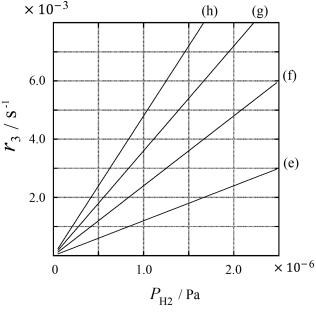
$$r_3 = k_3 \theta \tag{4}$$

where k_1 [s⁻¹ Pa⁻¹], k_2 [s⁻¹] and k_3 [s⁻¹] are the reaction rate constants and $P_{\rm H_2}$ is the pressure of $\rm H_2$. Among the sites available on the surface, θ (0 \leq θ \leq 1) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_1, r_2 \gg r_3$) and that θ remains constant.

B.1 r_3 can be expressed as:

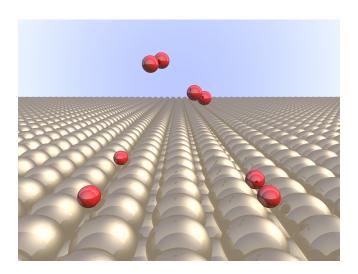
5pt


$$r_{3} = \frac{k_{3}}{1 + \sqrt{\frac{1}{P_{\text{H}_{2}}C}}} \tag{5}$$


Express C using k_1 and k_2 .

A metal sample with a surface area of $S=1.0\times 10^{-3}\,\mathrm{m}^2$ was placed in a container (1L = $1.0\times 10^{-3}\,\mathrm{m}^3$) with H $_2$ ($P_{\mathrm{H}_2}=1.0\times 10^2\,\mathrm{Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N=1.3\times 10^{18}\,\mathrm{m}^{-2}$. The surface temperature was kept at $T=400\,\mathrm{K}$. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v=4.0\times 10^{-4}\,\mathrm{Pa}$ s $^{-1}$. Assume that H $_2$ is an ideal gas and that the volume of the metal sample is negligible.

- **B.2** Calculate the amount of H atoms in moles absorbed per unit area of the surface $A \text{ [mol s}^{-1} \text{ m}^{-2}].$
- **B.3** At T=400 K, C equals 1.0×10^2 Pa $^{-1}$. Calculate the value of k_3 at 400 K. If you did not obtain the answer to **B.2**, use $A=3.6\times10^{-7}$ mol s $^{-1}$ m $^{-2}$.
- **B.4** At a different T, $C=2.5\times 10^3\,\mathrm{Pa^{-1}}$ and $k_3=4.8\times 10^{-2}\,\mathrm{s^{-1}}$ are given. For r_3 as a 3pt function of $P_{\mathrm{H_2}}$ at this temperature, **select** the correct plot from (a)–(h).



Q1-1Bengali (Bangladesh)

একটি ধাতব পৃষ্ঠে হাইড্রোজেন

	11 % of the total														
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total								
Points	6	4	5	3	3	3	24								
Score															

হাইড্রোজেন ভবিষ্যতের শক্তির উৎস হিসাবে প্রত্যাশিত যা জীবাশ্ম জ্বালানীর উপর নির্ভর করে না। এখানে, আমরা একটি ধাতুতে হাইড্রোজেন-স্টোরেজ প্রক্রিয়া বিবেচনা করব, যা হাইড্রোজেন-পরিবহন এবং-স্টোরেজের সাথে সম্পর্কিত প্রযুক্তি।

Part A

হাইড্রোজেন যেমন একটি ধাতব পৃষ্ঠের মাধ্যমে পরিশোষণ করা হয়, আমরা প্রথমে ধাতব পৃষ্ঠে হাইড্রোজেন- এর পরিশোষণ প্রক্রিয়াটি বিবেচনা করি। $H_2(g) \to 2H(ad)$, হাইড্রোজেন অণু (H_2) যা ধাতব (M)পৃষ্ঠে পৌঁছায় এবং পৃষ্ঠে বিয়োজিত হয়ে যায় এবং H-পরমাণু হিসাবে পরিশোষিত হয় (Fig. 1)। এখানে, (H_2) এর সম্ভাব্য শক্তি দুটি চল, আন্তঃবিদ্যুত দূরত্ব, \square , এবং পৃষ্ঠের ধাতব পরমাণুর সাথে সম্পর্কিত উচ্চতা \square দ্বারা উপস্থাপন করা হয়। এটা ধরা হয় যে, দুটি H পরমাণু বরাবর অক্ষটি পৃষ্ঠের সমান্তরাল এবং মাধ্যাকর্ষণ কেন্দ্র সর্বদা উল্লম্ব ডট রেখায় (Fig. 1) থাকে। Fig.2 তে পৃষ্ঠে বিয়োজনের জন্য স্থিতি শক্তি কনট্যুর গ্রাফ দেখাচ্ছে। সংখ্যার মানগুলি (H_2) -এর মোল প্রতি কেজি ইউনিটের সম্ভাব্য শক্তির উপস্থাপন করে। নিরেটলাইন ব্যবধানটি 20 kJ mol $^{-1}$, ড্যাশলাইন ব্যবধানটি 100 kJ mol $^{-1}$, , এবং নিরেট ও ড্যাশলাইনের মধ্যে ব্যবধান 80 kJ mol $^{-1}$ । এখানে শূন্য-পয়েন্ট কম্পনশক্তি উপেক্ষা করা হচ্ছে।

IChO

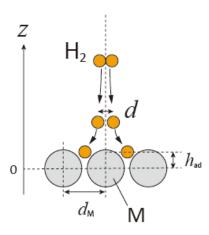


Fig.1 Definition of variables. Drawing is not in scale.

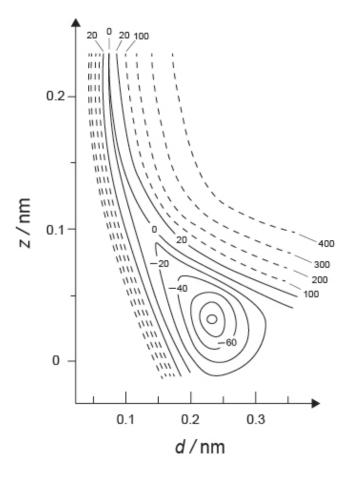


Fig.2

A.1 নিম্নলিখিত প্রতিটি আইটেমের (i)-(iii) জন্য, A–G থেকে নিকটতম মানটি নির্বাচন কর।

6pt

- (i) একটি H2 অণুর জন্য আন্তঃপারমানবিক দূরত্ব
- (ii) ধাত্ব পরমাণুর মধ্যে আন্তঃপারমানবিক দূরত্ব (dM in Fig. 1)
- (iii) পৃষ্ঠ থেকে পরিশোষিত H পরমাণুর দূরত্ব (had in Fig. 1)

A. 0.03 nm B. 0.07 nm C. 0.11 nm D. 0.15 nm E. 0.19 nm F. 0.23 nm G. 0.27 nm

A.2 নিম্নলিখিত আইটেমগুলির প্রতিটি (i) - (ii), A–H থেকে নিকটতম মানটি নির্বাচন করুন। (i) বায়বীয় H_2 এর বায়বীয় H থেকে বিচ্ছিন্নকরণের জন্য প্রয়োজনীয় শক্তি $[H_2(g) o 2H(g)]$

4pt

(ii) একটি বায়বীয় H_2 এর শোষণের সময় মুক্ত হওয়া শক্তি $[H_2(g) \to 2 H(ad)]$

A. 20 kJ mol^{-1} B. 40 kJ mol^{-1} C. 60 kJ mol^{-1} D. 100 kJ mol^{-1} E. 150 kJ mol^{-1} F. 200 kJ mol^{-1} G. 300 kJ mol^{-1} H. 400 kJ mol^{-1}

Q1-4

Bengali (Bangladesh)

Part B

পরিশোষিত হাইড্রোজেন পরমাণুগুলি হয় বাল্কে শোষিত হয়, বা পুনঃবিন্যস্থ এবং মুক্ত হয়ে গ্যাস পর্যায়ে ফিরে আসে, যেমন বিক্রিয়াগুলিতে (1a) এবং (1b) দেখানো হয়েছে। H(ab) বাল্কের মধ্যে শোষিত একটি হাইড্রোজেন পরমাণুর প্রতিনিধিত্ব করে।

$$H_2(g) \underset{k_2}{\overset{k_1}{\rightleftharpoons}} 2H(ad) \tag{1a}$$

$$H(ad) \xrightarrow{k_3} H(ab)$$
 (1b)

পরিশোষণ, ডিপরিশোষণ এবং শোষণের জন্য পৃষ্ঠতল প্রতি বিক্রিয়া হার যথাক্রমে, $r_1[\mathsf{s}^{-1}], r_2[\mathsf{s}^{-1}]$ এবং $r_3[\mathsf{s}^{-1}]$ । তাদেরকে এভাবে প্রকাশ করা হয়:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

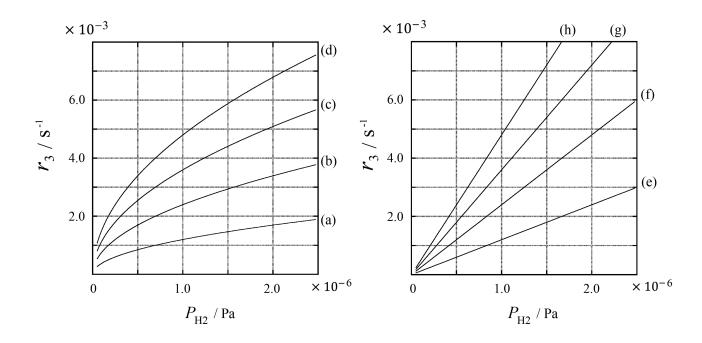
$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

যেখানে k_1 [s $^{-1}$ Pa $^{-1}$], k_2 [s $^{-1}$] এবং k_3 [s $^{-1}$] বিক্রিয়া হার ধ্রুবক এবং $P_{\rm H_2}$ হাইড্রোজেনের চাপ। পৃষ্ঠতল উপলব্ধ সাইটগুলির মধ্যে, θ ($0 \le \theta \le 1$) H পরমাণু দ্বারা দখলিকৃত অংশ। এখাণে ধারণা করা হয় যে, পরিশোষণ এবং ডেসারপশন শোষনের $(r_1, r_2 \gg r_3)$ তুলনায় দ্রুত হয় এবং θ স্থির থাকে।

B.1 r_3 কে প্রকাশ করা যেতে পারে:

5pt


$$r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{\text{H}_2}C}}} \tag{5}$$

C-কে k_1 এবং k_2 দিয়ে প্রকাশ কর।

 $S=1.0 imes 10^{-3}~{
m m}^2$ এর পৃষ্ঠতলের ক্ষেত্র সহ একটি ধাতব নমুনা একটি ধারকের ${
m H_2}$ –সহ স্থাপন করা হয়েছে (1L = $1.0 imes 10^{-3}~{
m m}^3$) $P_{{
m H_2}}=1.0 imes 10^2~{
m Pa}$). পৃষ্ঠের হাইড্রোজেন-পরমাণু শোষণকারী সাইটগুলির ঘনত্ব ছিল $N=1.3 imes 10^{18}~{
m m}^{-2}$. পৃষ্ঠের তাপমাত্রা রাখা হয়েছিল $T=400~{
m K}$. বিক্রিয়া (1) এগিয়ে যাওয়ার সাথে সাথে, $P_{{
m H_2}}$ ধ্রুবক হারে হ্রাস পেয়েছে $v=4.0 imes 10^{-4}~{
m Pa}~{
m s}^{-1}$. ধরে নাও যে ${
m H_2}$ একটি আদর্শ গ্যাস এবং ধাতব নমুনার পরিমাণটি নগন্য ।

- **B.2** প্রতি ইউনিট সময় পৃষ্ঠের ইউনিট ক্ষেত্রের মধ্যে শোষিত মোলগুলিতে H পরমাণুর পরিমাণ গণনা 3pt কর, $A \, [{
 m mol \ s^{-1} \ m^{-2}}].$
- **B.3** T=400 K, $C=1.0\times 10^2$ Pa $^{-1}$. k3 এর মান 400 K-এ গণনা কর। তুমি যদি B.2 এর উত্তর না 3pt পাও, তবে $A=3.6\times 10^{-7}$ mol s $^{-1}$ m $^{-2}$ ব্যবহার কর।
- **B.4** বিভিন্ন T, $C=2.5\times 10^3~{\rm Pa^{-1}}$ এবং $k_3=4.8\times 10^{-2}~{\rm s^{-1}}$ দেয়া আছে। r_3 এর জন্য $P_{{\rm H}_2}$ ফাংশণ 3pt এবং এই তাপমাত্রায়, (a)–(h) থেকে সঠিক প্লটটি নির্বাচন কর।

Hydrogen at a Metal Surface

Part A

A.1 (6 pt)					
	(i)	(ii)		(iii)	
A.2 (4 pt)					
		(i)	(ii)		

Part B

B.1 (5 pt)

C =	_		
B.2 (3 pt)			
B.2 (3 pt) $A =$	mol s ⁻¹ m ⁻²		
	mol s ⁻¹ m ⁻²		

B.3 (3 pt)			
$\underline{k_3} =$	s ⁻¹		
B.4 (3 pt)			

IChO Problem 2 Cover sheet

Please return this cover sheet together with all the related question sheets.

Isotope Time Capsule

11 % of the total						
Question	A.1	A.2	A.3	A.4	Total	
Points	8	8	10	9	35	
Score						

Molecular entities that differ only in isotopic composition, such as CH_4 and CH_3D , are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

$$^{12}\mathsf{C}^{16}\mathsf{O}_2 + ^{12}\mathsf{C}^{18}\mathsf{O}_2 \rightleftharpoons 2^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O} \qquad \qquad K = \frac{[^{12}\mathsf{C}^{16}\mathsf{O}^{18}\mathsf{O}]^2}{[^{12}\mathsf{C}^{16}\mathsf{O}_2][^{12}\mathsf{C}^{18}\mathsf{O}_2]} \tag{1}$$

The entropy, S, increases with increasing the number of possible microscopic states of a system, W:

$$S = k_{\mathsf{B}} \ln W \tag{2}$$

W=1 for $^{12}\mathrm{C^{16}O_2}$ and $^{12}\mathrm{C^{18}O_2}$. In contrast, W=2 for a $^{12}\mathrm{C^{16}O^{18}O}$ molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two $^{12}\mathrm{C^{16}O^{18}O}$ molecules, $W=2^2=4$.

Q2-2

English (Official)

A.1 The enthalpy change, ΔH , of eq. 3 is positive regardless of the temperature. 8pt

$$H_2 + DI \rightleftharpoons HD + HI$$
 (3)

<u>Calculate</u> the equilibrium constants, K, for eq. 3 at very low (think of $T \to 0$) and very high (think of $T \to +\infty$) temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for high temperatures.

The ΔH of the following process can be explained by molecular vibrations.

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

At T = 0 K, the vibrational energy of a diatomic molecule whose vibration frequency is ν [s⁻¹] is expressed as:

$$E = \frac{1}{2}h\nu \tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2 , according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 The vibration of H_2 is at 4161.0 cm⁻¹ when reported as a wavenumber. 8pt <u>Calculate</u> the ΔH of the following equation at T = 0 K in units of J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Assume that:

- only the vibrational energy contributes to the ΔH .
- the k values for H_2 , HD, and D_2 are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.

Q2-3
English (Official)

The molar ratio of H_2 , HD, and D_2 depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D_2 .

$$\Delta_{D_2} = \frac{R_{D_2}}{R_{D_2}^*} - 1 \tag{9}$$

Here, R_{D_2} refers to $\frac{[\mathsf{D}_2]}{[\mathsf{H}_2]}$ in the sample and $R_{\mathsf{D}_2}^*$ to $\frac{[\mathsf{D}_2]}{[\mathsf{H}_2]}$ at $T\to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T\to +\infty$.

A.3 Calculate Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1-1.5576 \times 10^{-4}$, respectively.

Q2-4
English (Official)

In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO_2 molecules with molecular weights of 44 and 47, which are described as $CO_2[44]$ and $CO_2[47]$ below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} refers to $\frac{[\mathrm{CO_2}[47]]}{[\mathrm{CO_2}[44]]}$ in the sample and R_{47}^* to $\frac{[\mathrm{CO_2}[47]]}{[\mathrm{CO_2}[44]]}$ at $T \to +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

	¹² C	¹³ C
natural abundance	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O	
natural abundance	0.997621	0.0003790	0.0020000	

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5} . 9pt **Estimate** the temperature using this R_{47} . This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of $CO_2[47]$ for the calculation.

Isotope Time Capsule

11 % of the total						
Question	A.1	A.2	A.3	A.4	Total	
Points	8	8	10	9	35	
Score						

আইসোটোপিক বিবেচনায় অনুগুলিকে পৃথক করা হয় । যেমন $\mathrm{CH_4}$ এবং $\mathrm{CH_3D}$, কে আইসোটোপোলগস বলা হয়। আইসোটো-পোলগসদের একই রাসায়নিক বৈশিষ্ট্যযক্ত বলে মনে করা হয়। তবে, সামান্য পার্থক্য আছে।

ধরে নেয়া যাক, এই প্রশ্নে প্রদর্শিত সমস্ত পদার্থ গ্যাস পর্যায়ে রয়েছে।

নিচের সাম্যাবস্থাটি বিবেচনা করা যাক-

$$^{12}C^{16}O_{2} + ^{12}C^{18}O_{2} \rightleftharpoons 2^{12}C^{16}O^{18}O \qquad K = \frac{[^{12}C^{16}O^{18}O]^{2}}{[^{12}C^{16}O_{2}][^{12}C^{18}O_{2}]}$$
(1)

এনট্রপি, S, কোনও সিস্টেমের সম্ভাব্য মাইক্রোস্কোপিক অবস্থা সংখ্যা বাড়ার সাথে বৃদ্ধি পায়, W:

$$S = k_{\mathsf{B}} \ln W \tag{2}$$

W=1 for $^{12}\mathrm{C^{16}O_2}$ and $^{12}\mathrm{C^{18}O_2}$. In contrast, W=2 for a $^{12}\mathrm{C^{16}O^{18}O}$ molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two $^{12}\mathrm{C^{16}O^{18}O}$ molecules, $W=2^2=4$.

 12 C 16 O $_2$ এবং 12 C 18 O $_2$ এর জন্য W=1। অপরদিকে 12 C 16 O 18 O অনুর জন্য W=2 , কারণ অক্সিজেন পরমানু এই অণুতে পৃথকযোগ্য। সাম্যাবস্থার সমীকরণ ১ এর ডান পাশে দুটি 12 C 16 O 18 O অনু রয়েছে, তাই, $W=2^2=4$.

Q2-2

Bengali (Bangladesh)

A.1 সমীকরণ ৩ এর এনথ্যালপি পরিবর্তন, ΔΗ, তাপমাত্রা নির্বিশেষে ধনাত্মক।

8pt

$$H_2 + DI \rightleftharpoons HD + HI$$
 (3)

সমীকরণ ৩ এর জন্য সাম্যধ্রুবক K গণনা কর, যখন তাপমাত্রা খুব কম (T \rightarrow 0) এবং তাপমাত্রা খুব বেশি (T \rightarrow + ∞)। ধরা যাক এই তাপমাত্রায় বিক্রিয়াটি অপরিবর্তিত থাকে এবং Δ H উচ্চ তাপমাত্রায় ধ্রুব মানে উন্নীত হয়।

নিম্নলিখিত প্রক্রিয়াটির ΔH আণবিক কম্পন দ্বারা ব্যাখ্যা করা যেতে পারে।

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

যখন T = 0 K, তখন একটি দ্বিপরমাণুক অণুর স্পন্দন শক্তি প্রকাশ করা হয় (যার কম্পনের ফ্রিকোয়েন্সি □[s-1])

$$E = \frac{1}{2}h\nu \tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

যেখানে k বল ধ্রুবক এবং 🛘 হ্রাসকৃত ভরকে দ্বিপরমাণুক অণুর ভরদ্বয়, m1 এবং m2, দ্বারা প্রকাশ করা হয়-

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 H2 এর একটি কম্পনের ওয়েভনাম্বার, 4161.0 cm−1 । নিম্নলিখিত সমীকরণের ΔH J mol−1 8pt এককে গণনা কর, যেখানে T = 0 K

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

ধরা যাক,

- কেবল কম্পনযুক্ত শক্তি ΔH এ অবদান রাখে
- k এর মান H2, HD, and D2 জন্য সমান
- H এর ভর 1 Da এবং D এর ভর 2 Da

H2, HD, এবং D2 এর মোলার অনুপাত সাম্যাবস্থার তাপমাত্রার উপর নির্ভর করে। এখানে, ΔD2, D2 এর মোলার অনুপাতের পরিবর্তনকে নির্দেশ করে,

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

এখানে, RD2, নমুনায় [D2]/ [H2] এবং R \square D2, $\square \to + \infty$ তে [D2]/ [H2]কে নির্দেশ করে । এখানে T $\rightarrow + \infty$ এ আইসোটোপগুলির বিতরণ এলোমেলো হয়ে যায়

A.3 ΔD2 গণনা কর, যেখানে আইসোটপিক পরিবর্তনের সাম্যধ্রুবক K (সমীকরণ 4) এর মান ঐ তাপ- 10pt মাত্রায় 0.300। ধরা যাক D ও H এর প্রাকৃতিক প্রাচুর্য অনুপাত যথাক্রমে 1.5576 × 10–4 এবং 1 - 1.5576 × 10–4।

Q2-4
Bengali (Bangladesh)

সাধারণভাবে, দ্বিপ্রতিস্থাপিত আইসোটোপ্লোগের মোলার অনুপাত তাপমাত্রা হ্রাসের সাথে বৃদ্ধি পায়, যার একটি অণুতে দুটি ভারী আইসোটোপ রয়েছে। CO2 এর মোলার অনুপাত বিবেচনা করা যাক, তাদের 44 এবং 47 আণবিক ওজনযুক্ত অণুগুলি, CO2 [44] এবং CO2 [47] দ্বারা বর্ণনা করা হয়েছে। এখানে Δ47 কে সংজ্ঞায়িত করা হয়েছে:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

এখানে কার্বন ও অক্সিজেনের প্রাকৃতিক প্রাচুর্যতা নীচে প্রদর্শিত হয়েছে; এখানে যে আইসোটোপগুলি দেখানো হয়নি তা উপেক্ষা কর।

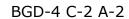
	¹² C	¹³ C
প্রাকৃতিক প্রাচুর্যতা	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
প্রাকৃতিক প্রাচুর্যতা	0.997621	0.0003790	0.0020000

Δ47 এর তাপমাত্রার নির্ভরতা নিম্নলিখিত ভাবে নির্ধারিত হয়, যেখানে Τ (K) পরম তাপমাত্রা

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 অ্যান্টার্কটিক সমুদ্র সৈকত থেকে প্রাপ্ত জীবাশ্ম-এ R47 এর মান 4.50865×10–5। এই R47 ব্য- 9pt বহার করে তাপমাত্রা নির্ণয় কর। এই তাপমাত্রা প্ল্যাঙ্কটন যে যুগে বাস করত সেই যুগে বাতাসের তাপমাত্রা। এখানে গণনার জন্য শুধুমাত্র সর্বাধিক সাধারণ আইসোটোপলজ CO2 [47] বিবেচনা কর।



Isotope Time Capsule

A.1 (8 pt)		
$T \rightarrow 0: K =$, $T \to +\infty : K =$	-

A.2 (8 pt)	
A.2 (6 pt)	
$\Delta H =$	$J \text{ mol}^{-1}$
	

A.3 (10 pt)		
$\Delta_{D_2} =$		

A.4 (9 pt)		
T = K		

IChO Problem 3 Cover sheet

Please return this cover sheet together with all the related question sheets.

Q3-1
English (Official)

Lambert-Beer Law?

8 % of the total				
Question	A.1	B.1	B.2	Total
Points	10	6	6	22
Score				

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

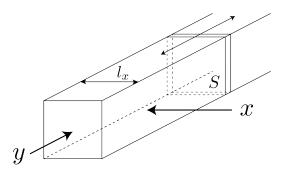
Part A

An aqueous solution **X** was prepared using HA and NaA. The concentrations [A⁻], [HA], and [H⁺] in solution **X** are 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹, and 1.00×10^{-4} mol L⁻¹, respectively, which are correlated via the following acid-base equilibrium:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]}$$
 (1)

The optical path length is l in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of **X** was A_1 at a wavelength of λ_1 . Then, solution **X** was diluted to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1 . **Determine** the ratio $\varepsilon_{\text{HA}}/\varepsilon_{\text{A}^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A $^-$, respectively, at λ_1 .


Q3-2
English (Official)

Part B

Let us consider the following equilibrium in the gas phase.

$$D \rightleftharpoons 2M$$
 (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of S (see the figure below) at a pressure P, and equilibrium is established while the total pressure is kept at P. The absorbance of the gas is $A = \varepsilon(n/V)l$, where ε , n, V, and l are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

	Initial state		After equilibrium	
	D	М	D	М
Partial pressure	P	0	p_{D}	p_{M}
Amount in moles	n_0	0	n_{D}	n_{M}
Volume	V_0		ı	7

- **B.1** The absorbance of the gas at $\lambda_{\rm B1}$ measured from direction x ($l=l_x$) was $A_{\rm B1}$ both at the initial state and after the equilibrium. **Determine** the ratio $\varepsilon_{\rm D}/\varepsilon_{\rm M}$ at $\lambda_{\rm B1}$, where $\varepsilon_{\rm D}$ and $\varepsilon_{\rm M}$ represent the absorption coefficients of D and of M, respectively.
- **B.2** The absorbance of the gas at $\lambda_{\rm B2}$ measured from direction y was $A_{\rm B2}$ both at the initial state ($l=l_y$) and after the equilibrium ($l=l_y$). **Determine** the ratio $\varepsilon_{\rm D}/\varepsilon_{\rm M}$ at $\lambda_{\rm B2}$.

Q3-1
Bengali (Bangladesh)

Lambert-Beer Law?

8 % of the total				
Question	A.1	B.1	B.2	Total
Points	10	6	6	22
Score				

এই সমস্যার ক্ষেত্রে সেল এবং দ্রাবকের শোষণ অগ্রাহ্য করো। সকল দ্রবণ এবং গ্যাসের তাপমাত্রা 25°C বিবেচ্য।

Part A

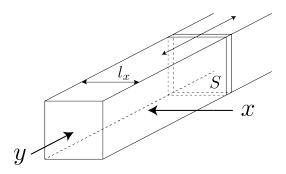
একটি জলীয় দ্রবণ X যা HA এবং NaA দ্বারা তৈরি। উক্ত দ্রবণে [A $^-$], [HA], এবং [H $^+$] এর ঘনমাত্রা যথাক্রমে $1.00\times 10^{-2}~\text{mol L}^{-1}$, $1.00\times 10^{-3}~\text{mol L}^{-1}$, এবং $1.00\times 10^{-4}~\text{mol L}^{-1}$, যারা নিম্নোক্ত এসিড-ক্ষার সাম্যাবস্থায় আছে:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]}$$
 (1)

পার্ট-A এর ক্ষেত্রে আলোকপথের দূরত্ব l এবং dilution এর ফলে density পরিবর্তন হয় না।

A.1 λ_1 তরঙ্গদৈর্ঘ্যে X এর শোষণ A_1 উক্ত দ্রবণকে pH=2.50 মাত্রার হাইড্রোক্লোরিক এসিড যোগে 10pt আদি আয়তনের দ্বিগুণ করা হলো। পাতলা করার পরেও দ্রবণের λ_1 তরঙ্গদৈর্ঘ্যে শোষণ A_1 পাওয়া গেলো। $\varepsilon_{\rm HA}/\varepsilon_{\rm A-}$, অনুপাতটি বের করো। $\varepsilon_{\rm HA}$ এবং $\varepsilon_{\rm A-}$ - যথাক্রমে HA এবং A $^-$, এর absorption coefficient প্রকাশ করে।

Q3-2


Bengali (Bangladesh)

Part B

নিচের গ্যাসীয় সাম্যাবস্থা বিবেচনা করা যাকঃ

$$D \rightleftharpoons 2M$$
 (2)

P চাপে বিশুদ্ধ D গ্যাস দ্বারা একটি ঘনক্ষেত্ররুপী (Cuboid) পাত্র পূর্ণ করা হলো যার দেয়াল স্বচ্ছ ও বিচরণশীল এবং প্রস্থচ্ছেদের ক্ষেত্রফল S (নিচের চিত্র দেখো)। উক্ত দেয়ালটি P ধ্রুব চাপে সাম্যাবস্থায় উপনীত হয়। গ্যাসটির শোষণ $A=\varepsilon(n/V)l$, যেখানে ε , n, V এবং l যথাক্রমে absorption coefficient, গ্যাসের মোলসংখ্যা, গ্যাসের আয়তন এবং আলোকপথের দৈর্ঘ্য নির্দেশ করে। মিশ্রণের সকল গ্যাসকে আদর্শ গ্যাস হিসেবে বিবেচনা কর।

প্রয়োজনবোধে নিম্নের সংজ্ঞাসমূহ ব্যবহার কর।

	Initial state		After equilibrium	
	D	М	D	М
Partial pressure	P	0	p_{D}	p_{M}
Amount in moles	n_0	0	n_{D}	n_{M}
Volume	V_0		1	7

- **B.1** x $(l=l_x)$ দিক থেকে পরিমাপ করলে $\lambda_{\rm B1}$ তরঙ্গদৈর্ঘ্যে গ্যাসটির আদিঅবস্থা এবং সাম্যাবস্থা উভয় 6pt ক্ষেত্রেই absorbance $A_{\rm B1}$ পাওয়া যায়। $\lambda_{\rm B1}$ এর ক্ষেত্রে $\varepsilon_{\rm D}/\varepsilon_{\rm M}$ বের কর, যেখানে $\varepsilon_{\rm D}$ এবং $\varepsilon_{\rm M}$ যথাক্রমে D এবং M absorption coefficient নির্দেশ করে।
- **B.2** y দিক থেকে পরিমাপ করলে $\lambda_{\rm B2}$ তরঙ্গদৈর্ঘ্যে গ্যাসটির absorbance আদি অবস্থা ($l=l_y$ ০)এবং 6pt সাম্যাবস্থা ($l=l_y$ ০) উভয়ক্ষেত্রেই $A_{\rm B2}$ । $\lambda_{\rm B2}$ এর ক্ষেত্রে $\varepsilon_{\rm D}/\varepsilon_{\rm M}$ বের কর।

Lambert-Beer Law?

Part A

A.1 (10 pt)	
(Continued on the next page)	

A.1 (cont.)		
(33 3)		
$arepsilon_{HA}/arepsilon_{A^-}=$		

Part B

$_{ m D}/arepsilon_{ m M}=$

B.2 (6 pt)		
$\frac{\varepsilon_{\rm D}/\varepsilon_{\rm M}=}{}$		

IChO Problem 4 Cover sheet

Please return this cover sheet together with all the related question sheets.

The Redox Chemistry of Zinc

11 % of the total								
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total	
Points	6	5	4	3	5	9	32	
Score								

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $Zn(OH)_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

$$\mbox{Zn(OH)}_2(\mbox{s}) \rightleftharpoons \mbox{Zn}^{2+}(\mbox{aq}) + 2\mbox{OH}^-(\mbox{aq}) \hspace{1cm} K_{\mbox{sp}} = 1.74 \times 10^{-17} \hspace{1cm} \mbox{(1)}$$

$${\rm Zn}({\rm OH})_2({\rm s})\rightleftharpoons {\rm Zn}({\rm OH})_2({\rm aq}) \hspace{1cm} K_1=2.62\times 10^{-6} \hspace{1cm} \rm (2)$$

$$\mathrm{Zn}(\mathrm{OH})_2(\mathrm{s}) + 2\mathrm{OH^-}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_4^{2-}(\mathrm{aq}) \hspace{1cm} K_2 = 6.47 \times 10^{-2} \hspace{1cm} \mathrm{(3)}$$

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$$
 $K_w = 1.00 \times 10^{-14}$ (4)

The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** When the equilibria in eq. 1–4 are established, <u>calculate</u> the pH range in which $[Zn(OH)_2(aq)]$ is the greatest among $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ and $[Zn(OH)_4^{2-}(aq)]$.
- A.2 A saturated aqueous solution of $Zn(OH)_2(s)$ with pH = 7.00 was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. **Calculate** the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$ZnO(s) + H2(g) \rightarrow Zn(s) + H2O(g)$$
(7)

B.1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. Calculate the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{\rm ZnO}(300^{\circ}{\rm C}) = -2.90 \times 10^2$ kJ mol $^{-1}$ and $\Delta G_{\rm H_2O}(300^{\circ}{\rm C}) = -2.20 \times 10^2$ kJ mol $^{-1}$, respectively.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 $^{\circ}$ C and pressure of 1 bar, E° .

$$\operatorname{Zn}(s) + \frac{1}{2}\operatorname{O}_2(g) \to \operatorname{ZnO}(s)$$
 $E^{\circ} = 1.65\,\mathrm{V}$ (8)

B.2 A zinc–air battery was discharged at 20 mA for 24 hours. <u>Calculate</u> the change 3pt in mass of the negative electrode (anode) of the battery.

5pt

Mt. Fuji

B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environment. <u>Calculate</u> the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are $-38\,^{\circ}\text{C}$ (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

at altitude h [m] and temperature T [°C]. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{\rm ZnO}(-38\,{}^{\circ}{\rm C})=-3.26\times10^2\,{\rm kJ\,mol^{-1}}$ at $-38\,{}^{\circ}{\rm C}$ and 1 bar.

B.4 Calculate the Gibbs energy change for reaction (6) at $25\,^{\circ}$ C. Note that the standard reduction potentials, $E^{\circ}(Zn^{2+}/Zn)$ and $E^{\circ}(O_2/H_2O)$ at $25\,^{\circ}$ C and 1 bar are given as (10) and (11), respectively.

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$${
m O_2 + 4H^+ + 4e^-}
ightarrow 2{
m H_2O}$$
 $E^{\circ}({
m O_2/H_2O}) = 1.23{
m V}$ (11)

The Redox Chemistry of Zinc

11 % of the total								
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total	
Points	6	5	4	3	5	9	32	
Score								

জিংক বহুদিন ধরে পিতল এবং ইস্পাতে ব্যবহার করা হচ্ছে। শিল্প বর্জ্য থেকে জিংক অধঃক্ষেপ হিসেবে আলাদা করে পানিকে দূষণমুক্ত করা হয় এবং প্রাপ্ত অধঃক্ষেপকে বিজারণ করে ধাতব জিংক পুনঃরুদ্ধার এবং ব্যবহার করা হয়।

Part A

25০ C তাপমাত্রায় Zn(OH)2 এর দ্রবীকরণ সাম্যাবস্থা (Dissolution equilibrium)এবং প্রাসঙ্গিক সাম্য ধ্রুবক সমীকরণ (1-4) এ দেওয়া হলোঃ

$$Zn(OH)_2(s) \rightleftharpoons Zn^{2+}(aq) + 2OH^-(aq)$$
 $K_{sp} = 1.74 \times 10^{-17}$ (1)

$$\mathrm{Zn}(\mathrm{OH})_2(\mathrm{s}) \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_2(\mathrm{aq}) \hspace{1cm} K_1 = 2.62 \times 10^{-6} \hspace{1cm} \mathrm{(2)}$$

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq)$$
 $K_2 = 6.47 \times 10^{-2}$ (3)

$$\label{eq:H2Older} {\rm H_2O(I)} \rightleftharpoons {\rm H^+(aq)} + {\rm OH^-(aq)} \qquad \qquad K_{\rm W} = 1.00 \times 10^{-14} \tag{4}$$

জিংকের দ্রাব্যতা, S সমীকরণ (5) এ দেওয়া হলোঃ

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- A.1 সমীকরণ (1-4) সাম্যাবস্থায় থাকলে কোন pHপরিসরে [Zn(OH)2(aq)] এর ঘনমাত্রা [Zn2+(aq)], 6pt [Zn(OH)2(aq)] এবং [Zn(OH)42-(aq)]এর মধ্যে সর্বাপেক্ষা বেশি।
- A.2 Zn(OH)2 এর একটি সম্পৃক্ত জলীয় দ্রবণ প্রস্তুত করে ছেঁকে নেয়া হলো যার pH=7.00। পরিস্রুত 5pt অংশে NaOH যোগে pH=12.00 করা হলে অধঃক্ষিপ্ত জিংকের molar percentage বের করো। আয়তন ও তাপমাত্রার পরিবর্তন অগ্রাহ্য করো।

Part B

পুনঃরুদ্ধারকৃত Zn(OH)2 কে তাপ দিলে নিম্নের সমীকরণ অনুযায়ী জিংক অক্সাইড পাওয়া যায়ঃ

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

জিংক অক্সাইডকে হাইড্রোজেন দ্বারা বিজারণ করলে ধাতব জিংক পাওয়া যায়।

$$ZnO(s) + H2(g) \rightarrow Zn(s) + H2O(g)$$
(7)

B.1 হাইড্রোজেনের চাপ 1 bar রেখে বিক্রিয়া (7) সংঘটিত হওয়ার জন্য উৎপন্ন জলীয়বাষ্পের আংশিক চাপ কমানো প্রয়োজন। 300 □C. তাপমাত্রায় বিক্রিয়া (7) সংঘটনের জন্য জলীয়বাষ্পের আংশিক চাপের সীমা বের করো। দেওয়া আছে, 300 □C তাপমাত্রা এবং 1 bar চাপে ZnO এবং জলীয়বাষ্প গঠনের Gibbs Energy যথাক্রমে ΔGZnO(300□C)=−2.90×102k|mol−1 and ΔGH2O(300□C)=−2.20×102k|mol−1

Metal-air ব্যাটারিতে ধাতব জিংক নেগেটিভ তড়িৎদ্বার (অ্যানোড) হিসেবে ব্যবহার করা হয় যা জিংক এবং জিংক অক্সাইড দ্বারা গঠিত। এতে 25o C এবং 1 bar চাপে নিম্নোক্ত জারণ-বিজারণ (রিডক্স) বিক্রিয়ার সাহায্যে তড়িৎ উৎপন্ন যার e.m.f, E□

$$\label{eq:Zn} {\rm Zn}({\rm s}) + \frac{1}{2}{\rm O}_2({\rm g}) \rightarrow {\rm ZnO}({\rm s}) \hspace{1cm} E^{\circ} = 1.65\,{\rm V} \hspace{1cm} \tag{8}$$

B.2 Zinc-air ব্যাটারি 24 ঘন্টা ধরে 20 mA এ discharge হয়। ব্যাটারিটির নেগেটিভ তড়িৎদ্বারের 3pt ভরের পরিবর্তন বের করো।

Mt. Fuji

B.3 ধরো, Zinc-Air ব্যাটারির e.m.f এর পরিবর্তন তার চারপাশের পরিবেশের উপর নির্ভরশীল। 5pt Mount Fuji পর্বতচূড়ায় e.m.f বের করো যেখানে তাপমাত্রা এবং উচ্চতা যথাক্রমে -38o C (February) এবং 3776 মিটার। বায়ুমন্ডলের চাপ নিম্নের সমীকরণ আকারে প্রকাশ করা যায়ঃ

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

উচ্চতা h [মিটার] এবং তাপমাত্রা T [oC]. বায়ুমন্ডলে অক্সিজেনের মোলার অনুপাত 21% -380 C এবং 1 bar চাপে বিক্রিয়া (৪) এর Gibbs শক্তির পরিবর্তন Δ GZnO (-380 C)= -3.26 × 102 kJmol-1

B.4 250 C এবং 1 bar চাপে বিক্রিয়া (6) এর Gibbs শক্তির পরিবর্তন বের করো। লক্ষণীয় যে, উক্ত 9pt তাপমাত্রা ও চাপে Standard Reduction Potential, Eo(Zn/Zn2+) এবং Eo(O2/H2O) যথাক্রমে সমীকরণ (10) এবং (11) হয়।

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.77V$ (10)

$${
m O_2 + 4H^+ + 4e^-}
ightarrow 2{
m H_2O}$$
 $E^{\circ}({
m O_2/H_2O}) = 1.23{
m V}$ (11)

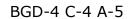
The Redox Chemistry of Zinc

Part A

A.1 (6 pt)	
< pH <	-

A.2 (5 pt)			
	%		

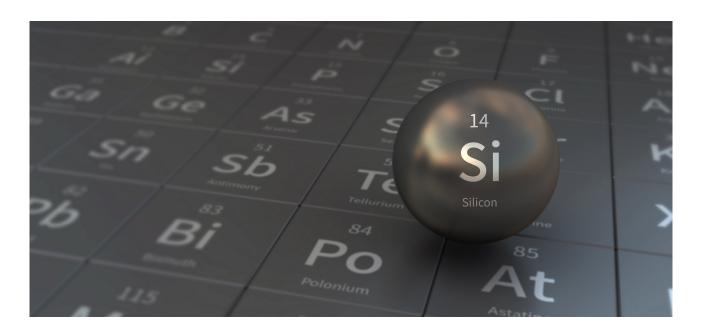
Part B


B.1 (4 pt)	
m	bar
$p_{H_2O=}$	bai
B.2 (3 pt)	

-	
B.3 (5 pt)	
V	
<u>V</u>	

B.4 (9 pt)	
$\Delta G^{\circ} =$	J mol ⁻¹

IChO Problem 5 Cover sheet


Please return this cover sheet together with all the related question sheets.

Q5-1
English (Official)

Mysterious Silicon

12 % of the total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Points	9	7	6	10	5	15	8	60
Score								

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as $R^1-Si \equiv Si-R^1$ (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

$$R^1-Si\equiv Si-R^1+$$
 $H_2C=CH_2$ \longrightarrow $Si=Si$ R^1 R^1

When $R^1-Si \equiv Si-R^1$ is treated with an alkyne ($R^2-C \equiv C-R^2$), the four-membered-ring compound $\bf A$ is formed as an initial intermediate. Further reaction of another molecule of $R^2-C \equiv C-R^2$ with $\bf A$ affords isomers $\bf B$ and $\bf C$, both of which have benzene-like cyclic conjugated structures, so-called 'disilabenzenes' that contain a six-membered ring and can be formulated as $(R^1-Si)_2(R^2-C)_4$.

$$R^1-Si\equiv Si-R^1+R^2-C\equiv C-R^2$$
 \longrightarrow A $\xrightarrow{R^2-C\equiv C-R^2}$ B + C

The 13 C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for **B** and one signal for **C**.

- **A.1 Draw** the structural formulae of **A**, **B**, and **C** using R¹, R², Si, and C, with one of 9pt the possible resonance structures.
- **A.2** Calculate the aromatic stabilization energy (ASE) for benzene and **C** (in the case of $R^1 = R^2 = H$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

Fig. 1

When a xylene solution of **C** is heated, it undergoes isomerization to give an equilibrium mixture of compounds **D** and **E**. The molar ratio is **D** : **E** = 1 : 40.0 at 50.0 °C and **D** : **E** = 1 : 20.0 at 120.0 °C.

A.3 Calculate ΔH for the transformation of **D** to **E**. Assume that ΔH does not depend on temperature.

The isomerization from **C** to **D** and to **E** proceeds via transformations of π -bonds into σ -bonds without breaking any σ -bonds. A ¹³C NMR analysis revealed one signal for the Si₂C₄ skeleton of **D** and two signals for that of **E**. The skeleton of **D** does not contain any three-membered rings, while **E** has two three-membered rings that share an edge.

A.4 Draw the structural formulae of **D** and **E** using R¹, R², Si, and C.

10pt

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl₄ using Na₂SiF₆ was carried out as follows.

- Standardization of Na₂SiF₆ solution :
- Preparation

Aqueous solution **F**: 0.855 g of Na₂SiF₆ (188.053 g mol⁻¹) dissolved in water (total volume: 200 mL).

Aqueous solution **G**: 6.86 g of $Ce_2(SO_4)_3$ (568.424 g mol⁻¹) dissolved in water (total volume: 200 mL).

· Procedure

Precipitation titration of a solution **F** (50.0 mL) by dropwise adding solution **G** in the presence of xylenol orange, which coordinates to Ce^{3+} , as an indicator. After adding 18.8 mL of solution **G**, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce^{3+} , and the only resulting silicon compound is $Si(OH)_4$.

B.1 Write the balanced equation for the reaction of Na_2SiF_6 with $Ce_2(SO_4)_3$.

5pt

Reaction of CCl₄with Na₂SiF₆:

(Substance losses by e.g. evaporation are negligible during the following operations.)

Na₂SiF₆(x [g]) was added to CCl₄ (500.0 g) and heated to 300°C in a sealed pressure-resistant reaction vessel. The unreacted Na₂SiF₆ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl₄ (solution **H**). The ²⁹Si and ¹⁹F NMR spectra of solution **H** showed SiF₄ as the only silicon compound. In the ¹⁹F NMR spectrum, in addition to SiF₄, signals corresponding to CFCl₃, CF₂Cl₂, CF₃Cl, and CF₄ were observed (*cf.* Table 1). The integration ratios in the ¹⁹F NMR spectrum are proportional to the number of fluorine nuclei.

Table 1

¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄
Integration ratio	45.0	65.0	18.0	2.0

SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6$$
 (8)

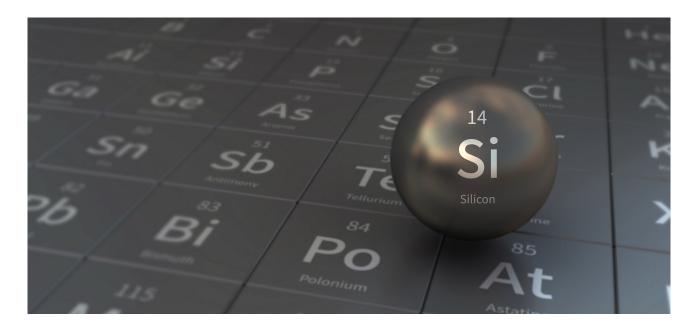
Solution \mathbf{H} (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H₂SiF₆ generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na₂SiF₆ (aqueous solution \mathbf{J}).

The precipitate of unreacted Na_2SiF_6 and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution **K**; 10.0 L).

Then, additional precipitation titrations using solution ${\bf G}$ were carried out, and the endpoints of the titrations with ${\bf G}$ were as follows:

- ·For solution J (entire amount): 61.6 mL.
- ·For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.


- **B.2** Calculate the mass of the NaCl produced in the reaction vessel (information underlined), and calculate the mass (x [g]) of the Na₂SiF₆ used as a starting material.
- **B.3** 77.8% of the CCl₄ used as a starting material was unreacted. **Calculate** the mass 8pt of CF₃Cl generated.

Q5-1
Bengali (Bangladesh)

রহস্যময় সিলিকন

12 % of the total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Points	9	7	6	10	5	15	8	60
Score								

সিলিকন কার্বনের মতো একটি গ্রুপ 14 উপাদান হিসাবেও, তাদের বৈশিষ্ট্যগুলি উল্লেখযোগ্যভাবে পৃথক।

Part A

কার্বন – কার্বন ট্রিপল বন্ডের বিপরীতে, সিলিকন – সিলিকন ট্রিপল বন্ডটি একটি যৌগ হিসাবে এভাবে তৈরি হয় R1–Si ≡Si – R1 (R: জৈব গ্রুপ) অত্যন্ত সক্রিয়। উদাহরণস্বরূপ, এটি ইথিলিন গঠনের সাথে বিক্রিয়া দেয় যা চার-মেম্বারের একটি চক্রীয় উৎপাদ।

$$R^1-Si\equiv Si-R^1+$$
 $H_2C=CH_2$ \longrightarrow $Si=Si$ R^1 R^1

যখন R1–Si =Si – R1 কে অ্যালকাইন (R2–C≡C– R2) দিয়ে treat করা হয়, তখন চার-মেম্বারযুক্ত রিং প্রাথমিক মধ্যবর্তী যৌগ A গঠিত হয় । R2–C≡C– R2 অণুর সাথে A-এর আরও বিক্রিয়ায় আইসোমার B এবং C, উভয়েরই বেনজিনের মতো চক্রীয় সংশ্লেষিত কাঠামো রয়েছে এবং যারা তথাকথিত 'disilabenzenes' উৎপন্ন করে । এতে ছয়-মেম্বারযুক্ত রিং থাকে এবং এটি (R1–Si)2 (R2–C)4 হিসাবে থাকতে পারে।

$$R^1-Si\equiv Si-R^1+R^2-C\equiv C-R^2$$
 \longrightarrow A $\stackrel{R^2-C\equiv C-R^2}{\longrightarrow}$ B + C

সংশ্লিষ্ট ছয়-মেম্বারযুক্ত রিং কাঠামো Si2C4 এর 13C NMR বিশ্লেষণ B এর জন্য দুটি এবং C এর জন্য একটি সিগন্যাল সংকেত দেখায়।

A.1 R1, R2, Si এবং C ব্যবহার করে A, B, এবং C এর সম্ভাব্য গাঠনিক অনুরণনগুলি আঁক । 9pt

A.2 বেনজিন এবং C এর ক্ষেত্রে aromatic স্থিতিশীল শক্তি (ASE) ধনাত্মক মান হিসাবে গণনা কর (7pt R1=R2=H এর ক্ষেত্রে) যেখানে নীচে প্রদর্শিত অসম্পৃক্ত সিস্টেমগুলির হাইড্রোজেনেশনের এন-থ্যালপি পরিবর্তন বিবেচনা করা যায় (Fig. 1)।

H ₂ C=CH ₂	+	H ₂		H_3C-CH_3	$\Delta H = -135 \text{ kJ mol}^{-1}$	(1)
H ₂ Si=CH ₂	+	H ₂		H ₃ Si—CH ₃	$\Delta H = -213 \text{ kJ mol}^{-1}$	(2)
$H_2Si = SiH_2$	+	H ₂		H ₃ Si — SiH ₃	$\Delta H = -206 \text{ kJ mol}^{-1}$	(3)
	+	3 H ₂			$\Delta H = -173 \text{ kJ mol}^{-1}$	(4)
HSi — SiH	+	3 H ₂		$H_2Si-SiH_2$	$\Delta H = -326 \text{ kJ mol}^{-1}$	(5)
HSi	+	3 H ₂		H ₂ Si SiH ₂	$\Delta H = -368 \text{ kJ mol}^{-1}$	(6)
HSi	+	3 H ₂		H ₂ Si SiH ₂	$\Delta H = -389 \text{ kJ mol}^{-1}$	(7)

Fig. 1

10pt

যখন জাইলিন দ্রবণ C উত্তপ্ত করা হয়, তখন এটির আইসোমারাইজেশন হয় এবং একটি সাম্যমিশ্রণ D এবং E এর যৌগ দেয়। মোলার অনুপাত 50.0 ডিগ্রি সেন্টিগ্রেড এ D: E = 1: 40.0 এবং 120.0 ° সে এ D: E = 1: 20.0 ।

A.3 D থেকে E তে রূপান্তরের জন্য ΔΗ গণনা কর। ধর ΔΗ তাপমাত্রার উপর নির্ভর করে না। 6pt

C থেকে D এবং E-তে আইসোমাইজাইজেশন π-বন্ডগুলি □-বন্ডে রূপান্তরকরণের মাধ্যমে এগিয়ে যায় । 13C NMR বিশ্লেষণে D এর Si2C4 আকৃতির জন্য একটি সংকেত এবং E এর জন্য দুটি সংকেত দেখায় । D এর আকৃতিতে (skeleton) কোনও তিন-মেম্বারযুক্ত রিং থাকে না, এবং E এর দুটি তিন-মেম্বারযুক্ত রিং একটি কিনারা ভাগ করে ।

A.4 R1, R2, Si এবং C ব্যবহার করে D এবং E এর কাঠামোগত সূত্রগুলি আঁক।

সিলিকন ফ্লোরিনের মতো তড়িৎ ঋণাত্মক মৌলগুলির (>চার প্রতিস্থাপনীয়) সাথে অত্যন্ত সমন্বিত যৌগ গঠনে সবক্ষম। ধাতু ফ্লোরাইডগুলি প্রায়শই ফ্লুরিনেশন রিএজেন্ট হিসাবে ব্যবহৃত হয়, যা উচ্চতর সমন্বিত সিলিকন ফ্লোরাইডের ফ্লোরিনেশন রিএজেন্ট হিসাবেও কাজ করে।

Na2SiF6 ব্যবহার করে CCl4 এর ফ্লুরিনেশন বিক্রিয়া নিম্নলিখিত হিসাবে সম্পন্ন হয়েছে।

Na2SiF6 দ্রবন মানককরণ (standardization)

প্রস্তুতি (Preparation)

জলীয় দ্রবণ F: Na2SiF6 এর 0.855 গ্রাম (188.053 গ্রাম মোল – 1) জলে দ্রবীভূত (মোট আয়তন: 200 এমএল)। জলীয় দ্রবণ G: Ce2(SO4)3 এর 6.86 গ্রাম (568.424 গ্রাম মোল – 1) জলে দ্রবীভূত (মোট আয়তন: 200 এমএল)।

পদ্ধতি (Procedure)

Xylenol এর উপস্থিতিতে দ্রবীভূতভাবে দ্রবণ G যোগ করে একটি দ্রবণ F (50.0 mL) এর অধঃক্ষেপ ট্রাইমিতিকরন করা হল যেখানে নির্দেশক হিসাবে xylenol orange Ce3+ এর সাথে সন্নিবেশিত হয়ে নির্দেশক হিসাবে কাজ করে। 18.8 মিলিলিটার G দ্রবণ যুক্ত করার পরে, এর রঙ হলুদ থেকে ম্যাজেন্টায় পরিবর্তিত হয়। উৎপন্ন অধঃক্ষেপটি একটি বাইনারি যৌগিক যাতে Ce3+, এবং একমাত্র Si(OH)4 থাকে।

B.1 Ce2(SO4)3 দিয়ে Na2SiF6 এর বিক্রিয়ার জন্য ভারসাম্যযুক্ত সমীকরণটি লিখ। 5pt

Na2SiF6 এর সাথে CCl4 এর বিক্রিয়া:

(উদাহরণস্বরূপ, বাষ্পীভবন দ্বারা পদার্থের হ্রাসকরণ নিম্নলিখিত ক্রিয়াকলাপের সময় নগণ্য)

Na2SiF6(x [g]) CCl4 (500.0 গ্রাম) এর সাথে যোগ করে একটি সিল করা চাপ-প্রতিরোধী প্রতিক্রিয়াতে 300°C উত্তপ্ত করা হয়েছে। অবিক্রিয়ারত Na2SiF6 এবং উৎপন্ন NaCl পরিস্রাবণ দ্বারা পৃথক করা হয়। পরিস্রাবণটি CCl4 (solution H) সহ মোট 1.00 L এ মিশ্রিত করা হয়। দ্রবণ H এর 29Si এবং 19F NMR স্পেকট্রা SiF4, কে একমাত্র সিলিকন যৌগ হিসাবে দেখায়। তদুপরি SiF4 এর সাথে 19F NMR বর্নালিতে CFCl3, CF2Cl2, CF3Cl, এবং CF4 এর সাথে সম্পর্কিত সিগন্যাল দেখায় (cf. Table 1)। 19F NMR বর্ণালীতে ইন্টিগ্রেশন অনুপাত ফ্লরিন নিউক্লিয়াসের সংখ্যার সাথে সমানুপাতিক।

Table 1

¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF3Cl	CF ₄
Integration ratio	45.0	65.0	18.0	2.0

SiF₄ is hydrolyzed to form H₂SiF₆ according to the following eq. 8:

Q5-4
Bengali (Bangladesh)

(8)

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6$$

দ্রবন H (10 mL) অতিরিক্ত পরিমাণে পানিতে যোগ করা হয়, যার ফলে SiF4 সম্পূর্ণ আর্দ্র-বিশ্লেষিত হয়। আলাদা হওয়ার পরে, জলীয় দ্রবণে আর্দ্র-বিশ্লেষিত থেকে উৎপন্ন H2SiF6 নিরপেক্ষ করা হয় এবং সম্পূর্ণরূপে Na2SiF6 (জলীয় দ্রবণ J) তে রূপান্তরিত করা হয়।

অপরিশোধিত Na2SiF6 এবং NaCl এর পূর্বরূপ, যা প্রাথমিক পদক্ষেপ (আন্ডারলাইন) এর পরিস্রাবণ দ্বারা সরানো হয়েছিল, সেটি একটি জলীয় দ্রবণ দেয় (দ্রবন K; 10.0 L)।

তারপরে, দ্রবন G ব্যবহার করে অতিরিক্ত অধঃক্ষেপ টাইটারেশন সম্পাদন করা হয়েছিল, এবং এর শেষ-বিন্দু ছিল নিম্নরূপ:

- ·For solution J (entire amount): 61.6 mL.
- ·For 100 mL of solution K: 44.4 mL.

এখানে উল্লেখ করা উচিত যে NaCl বা SiO2 এর সহাবস্থানের জন্য অধঃক্ষেপ টাইটারেশনে কোনও প্রভাব নেই।

- **B.2** বিক্রিয়া পাত্রে উৎপাদিত NaCl এর ভর গণনা কর (তথ্য underlined) এবং শুরুতে ব্যবহৃত 15pt Na2SiF6 এর ভর (□ [g]) গণনা কর।
- **B.3** প্রারম্ভিক উপাদান হিসাবে ব্যবহৃত CCl4 এর 77,8% অপরিবর্তিত ছিল। CF3Cl এর ভর গণনা 8pt কর।

Mysterious Silicon

Part A

A.1 (9 pt)

A (3 pt)	B (3 pt)		C (3 pt)
A.2 (7 pt)			
C ₆ H ₆ :	kJ mol⁻¹, C :	kJ mol ⁻¹	

A.3 $(6 pt)$			
$\Delta H =$	kJ mol ^{−1}		
A.4 (10 pt)			
	D (5 pt)	E (5 pt)	

n	_		_
r	а	П	-

B.2 (15 pt)
(Continued on the next page)

B.2 (cont.)		
NaCl :	g, Na ₂ SiF ₆ :	g

B.3 (8 pt)		
CF ₃ Cl :	g	

IChO Problem 6 Cover sheet

Please return this cover sheet together with all the related question sheets.

The Solid-State Chemistry of Transition Metals

	13 % of the total										
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Total
Points	6	3	3	6	4	4	4	5	5	5	45
Score											

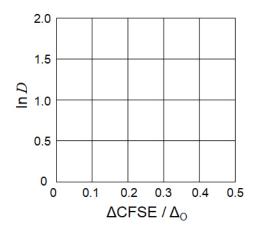
Volcano at Sakurajima island

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M^{n+}) in the magma is incorporated into the silicate minerals. The M^{n+} studied in the problem are coordinated by oxide ions (O^{2-}) and adopt a four-coordinate tetrahedral (T_{d}) geometry in the magma and six-coordinate octahedral (O_{h}) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M^{n+} between the silicate minerals and magma, D, can be expressed by:

$$D = \frac{[\mathrm{M}]_{\mathrm{s}}}{[\mathrm{M}]_{\mathrm{l}}}$$

where $[M]_s$ and $[M]_l$ are the concentrations of M^{n+} in the silicate minerals and the magma, respectively. The table below shows the D values of Cr^{2+} and Mn^{2+} as examples.


	Cr ²⁺	Mn ²⁺
\overline{D}	7.2	1.1

Let Δ_O and CFSE^O be the energy separation of the d-orbitals of Mⁿ⁺ and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

A.1 <u>Calculate</u> | CFSE^O-CFSE^T| = ΔCFSE in terms of Δ_O for Cr²⁺, Mn²⁺, and Co²⁺; 6pt assume $\Delta_T = 4/9\Delta_O$.

A.2 A linear relationship is observed by plotting $\ln D$ against ΔCFSE / $\Delta_{\rm O}$ in the Cartesian coordinate system shown below. **Estimate** D for ${\rm Co}^{2+}$.

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

A.3 Choose the appropriate set of lattice enthalpies [kJ mol $^{-1}$] from one of the options (a) to (f).

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Part B

IChO

A mixed oxide **A**, which contains La³⁺ and Cu²⁺, crystallizes in a tetragonal unit cell shown in Fig.1. In the $[CuO_6]$ octahedron, the Cu–O length along the z-axis (l_z) is longer than that of the x-axis (l_x), and $[CuO_6]$ is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals ($d_{x^2-y^2}$ and d_{z^2}).

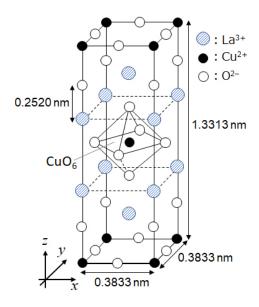


Fig. 1

A can be synthesized by thermal decomposition (pyrolysis) of complex **B**, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of **B** in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO_2 . The total weight loss during the formation of **A** from **B** is 63.6%. It should be noted that only water and CO_2 are released in the pyrolysis reaction.

B.1	Write the chemical formulae for A and B .	6pt
B.2	<u>Calculate</u> l_x and l_z using Fig. 1.	4pt
В.3	For Cu^{2+} in the distorted $[CuO_6]$ octahedron in A of Fig. 1, write the names of the split e_g orbitals $(d_{x^2-y^2}$ and $d_{z^2})$ in (i) and (ii), and draw the electron configuration in the dotted box in your answer sheet.	4pt

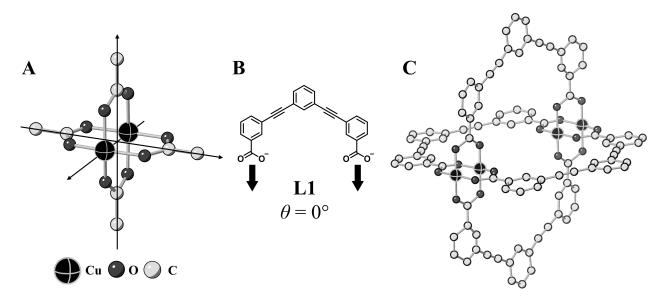
Q6-4
English (Official)

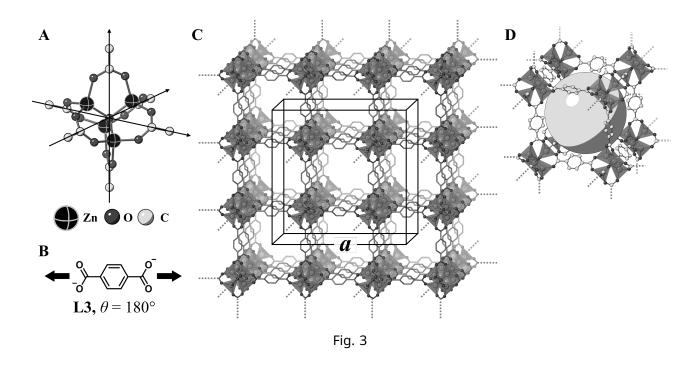
A is an insulator. When one La³⁺ is substituted with one Sr²⁺, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr²⁺-doped **A** shows superconductivity below 38 K. When a substitution reaction took place for **A**, 2.05×10^{27} holes m⁻³ were generated.

B.4 Calculate the percentage of Sr²⁺ substituted for La³⁺ based on the mole ratio 4pt in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

 $Cu_2(CH_3CO_2)_4$ is composed of four $CH_3CO_2^-$ coordinated to two Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four $CH_3CO_2^-$ and an axis passing through the two Cu^{2+} , all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of $CH_3CO_2^-$, a "cage complex" is formed. The cage complex $Cu_4(\mathbf{L1})_4$ is composed of planar dicarboxylate **L1** (Fig. 2B) and Cu^{2+} (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for **L1**. Note that hydrogen atoms are not shown in Fig. 2.




Fig. 2

C.1 The θ of the planar dicarboxylate **L2** below is fixed to 90°. If the composition of the cage complex formed from **L2** and Cu^{2+} is $\operatorname{Cu}_n(\mathbf{L2})_m$, $\underline{\operatorname{give}}$ the smallest integer combination of n and m. Assume that only the CO_2^- groups of **L2** form a coordination bond to Cu^{2+} ions.

L2
$$\theta = 90^{\circ}$$

A zinc complex, $Zn_4O(CH_3CO_2)_6$, contains four tetrahedral Zn^{2+} , six $CH_3CO_2^{-}$, and one O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of $CH_3CO_2^{-}$ are oriented orthogonal relative to each other. When p-benzenedicarboxylate (Fig. 3B, $\mathbf{L3}$, θ = 180°) is used instead of $CH_3CO_2^{-}$, the Zn^{2+} clusters are linked to each other to form a crystalline solid (\mathbf{X}) that is called a "porous coordination polymer" (Fig. 3C). The composition of \mathbf{X} is $[Zn_4O(\mathbf{L3})_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

- **C.2 X** has a cubic unit cell with a side length of a (Fig. 3C) and a density of 0.592 5pt g cm⁻³. **Calculate** a in [cm].
- **C.3 X** contains a considerable number of pores, and 1 g of **X** can accommodate 3.0×10^2 mL of CO $_2$ gas in the pores at 1 bar and 25 °C. **Calculate** the average number of CO $_2$ molecules per pore.

The Solid-State Chemistry of Transition Metals

	13 % of the total										
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4		C.2	C.3	Total
Points	6	3	3	6	4	4	4	5	5	5	45
Score											

Volcano at Sakurajima island

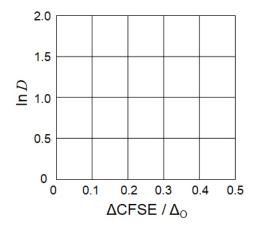
Part A

জাপানে সর্বাধিক সংখ্যক আগ্নেয়গিরি রয়েছে। যখন সিলিকেট খনিজগুলি ম্যাগমা থেকে ক্রিস্টলাইজ করে, ম্যাগমাতে অবস্থিত transition-metal আয়নগুলির (\mathbf{M}^{n+}) একটি অংশ সিলিকেট খনিজগুলিতে সংযুক্ত হয়। এখানে \mathbf{M}^{n+} গুলো অক্সাইড আয়নগুলি (\mathbf{O}^{2-}) দ্বারা ম্যাগমাতে tetrahedral ($T_{\mathbf{d}}$) জ্যামিতি আকৃতির এবং সিলিকেট খনিজগুলিতে octahedral ($O_{\mathbf{h}}$) জ্যামিতি আকৃতির হয়। উভয়ই উচ্চ-স্পিন ইলেক্ট্রন কনফিগারেশন প্রদর্শন করে। সিলিকেট খনিজ এবং ম্যাগমা এর মধ্যে \mathbf{M}^{n+} বিতরণ সহগ D দ্বারা প্রকাশ করা যেতে পারে:

$$D = \frac{[\mathrm{M}]_{\mathrm{s}}}{[\mathrm{M}]_{\mathrm{l}}}$$

যেখানে $[M]_s$ এবং $[M]_l$ যথাক্রমে সিলিকেট খনিজ এবং ম্যাগমাতে M^{n+} ঘনমাত্রা । নিচের টেবিলে উদাহরণস্বরূপ Cr^{2+} এবং Mn^{2+} এর D মান প্রদান করা হলঃ

	Cr ²⁺	Mn ²⁺
D	7.2	1.1



এখানে Δ_0 এবং CFSE 0 যথাক্রমে $\mathbf{M}^{\mathrm{n}+}$ এ d-orbital এর শক্তিস্তরের বিভাজন ও O_{h} স্ফটিক-ক্ষেত্রের স্থিতিশীলতার শক্তির বিভাজন কে নির্দেশ করে। Δ_{T} এবং CFSE $^{\mathrm{T}}$ T_{d} ক্ষেত্রের জন্য.

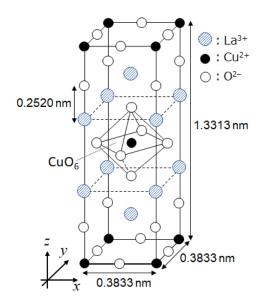
A.1 Δ_T = 4/9 Δ_O ধরে নিয়ে, Cr²⁺, Mn²⁺, এবং Co²⁺ এর Δ_O জন্য |CFSE^O—CFSE^T| = ΔCFSE 6pt হিসাব কর

A.2 কার্টেসিয়ান স্থানাঙ্ক-এ $\ln D$ vs ΔCFSE / Δ_0 এর রৈখিক সম্পর্ক লক্ষ্য করা যায়। \cos^{2+} এর D হিসাব কর-

3pt

ধাতব অক্সাইড MO (M: Ca, Ti, V, Mn, or Co) কেলাসিত হয় শিলা-লবণের কাঠামোতে। ${\sf M}^{\sf n+}$ একটি উচ্চ-স্পিন ইলেক্ট্রন কনফিগারেশন সহ $O_{\sf h}$ জ্যামিতিক আকৃতি গ্রহণ করে। এই অক্সাইডগুলির ল্যাটিক্স এনথ্যালপি মূলত আয়নগুলির ব্যাসার্ধ এবং চার্জের উপর ভিত্তি করে কুলম্ব ইন্টারঅ্যাকশন দ্বারা পরিচালিত হয়। এখানে ${\sf M}^{\sf n+}$ এর CFSE এর কিছু অবদান $O_{\sf h}$ ফিল্ডে রয়েছে।

A.3 (a) থেকে (f) এর মধ্যে ল্যাটিস এনথালপির [kJ mol^{-1}] উপযুক্ত সেটটি নির্বাচন কর


3pt

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Part B

একটি মিশ্র অক্সাইড **A** তে La³+ এবং Cu²+ আছে, যার কেলাসিত tetragonal unit cell Fig.1 এ দেখানো হয়েছে। [CuO $_6$] octahedron এ, Cu–O এর z-axis (l_z) বরাবর দৈর্ঘ্য x-axis (l_x) এর তুলনায় বেশি এবং [CuO $_6$] এর আকৃতি নিয়মিত $O_{\rm h}$ থেকে বিকৃত। এই বিকৃতির জন্য e $_{\rm g}$ অরবিটালের (d $_{x^2-y^2}$ and d $_{z^2}$) সমশক্তি নষ্ট হয়।

A কে complex **B** এর তাপীয় decomposition (pyrolysis) দ্বারা সংশ্লেষিত করা যায়। complex **B** কে স্কয়ারিক অ্যাসিডযুক্ত (একটি ডায়াসিড, $C_4H_2O_4$) পাতলা জলীয় অ্যামোনিয়া দ্রবণে ধাতব ক্লোরাইড মিশ্রিত করে গঠিন করা যায়। **B** এর বাতাসে pyrolysis এ স্ফটিককরণের জল হ্রাসের কারণে 200 °C পর্যন্ত 29.1% ওজন হ্রাস পায়, এরপরে 700 °C অবধি আরও ওজন হ্রাস পায় CO_2 ত্যাগ করার জন্য। **B** থেকে **A** গঠনের সময় মোট ওজন হ্রাস 63.6%। এই পাইরোলাইসিস প্রক্রিয়ায় শুধু পানি এবং CO_2 মুক্ত হয়।

Fig. 1

B.1	A এবং B এর রাসায়নিক সংকেত লিখ-	6pt
B.2	Fig. 1. থেকে l_x এবং l_z হিসাব কর-	4pt
B.3	Fig. 1 এর A তে বর্ণিত বিকৃত [CuO $_6$] octahedron এ Cu $^{2+}$ বিভক্ত e $_{ m g}$ orbitals (d $_{x^2-y^2}$ and d $_{z^2}$) in (i) and (ii) এর নামগুলো লিখ, এবং dotted box এ electron configuration লিখ-	4pt

A একটি অন্তরক। যখন একটি La^{3+} , একটি Sr^{2+} দ্বারা প্রতিস্থাপিত হয় তখন একটি হোল তৈরি হয় এবং তখন বিদ্যুৎ পরিবহন করতে পারে। ফলস্বরূপ, Sr^{2+} -doped **A** 38 K এর নিচে সুপারকন্ডাকটিভিটি দেখায়। যখন **A** এর প্রতিস্থাপন বিক্রিয়া হয় তখন, 2.05×10^{27} holes m^{-3} তৈরি হয়।

B.4 প্রতিস্থাপন বিক্রিয়ার মোল ভগ্নাংশের উপর ভিত্তি কর, La³⁺ এর দ্বারা Sr²⁺ এর শতকরা প্রতিস্থা- 4pt পন হিসাব কর। এই প্রতিস্থাপন বিক্রিয়ার আয়নগুলির যোজনী ও crystal structure পরিবর্তিত হয় নাই।

Part C

 $Cu_2(CH_3CO_2)_4$ is composed of four $CH_3CO_2^-$ coordinated to two Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four $CH_3CO_2^-$ and an axis passing through the two Cu^{2+} , all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of $CH_3CO_2^-$, a "cage complex" is formed. The cage complex $Cu_4(\mathbf{L1})_4$ is composed of planar dicarboxylate **L1** (Fig. 2B) and Cu^{2+} (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for **L1**. Note that hydrogen atoms are not shown in Fig. 2.

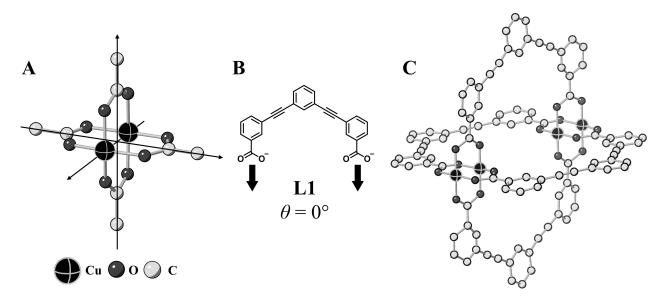
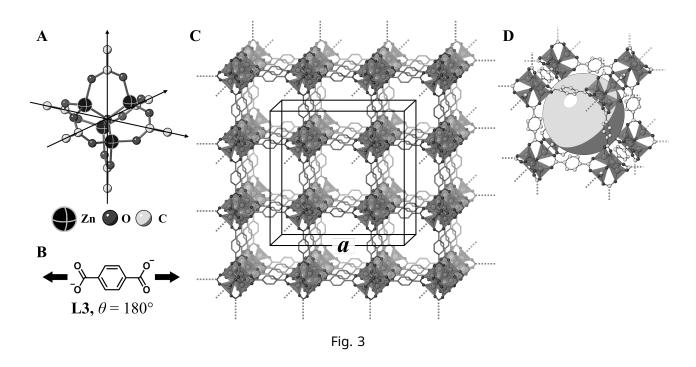


Fig. 2

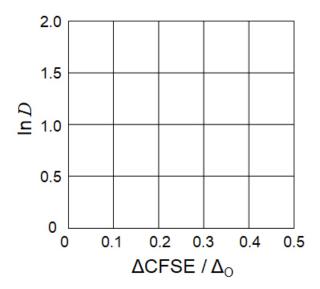


C.1 The θ of the planar dicarboxylate **L2** below is fixed to 90°. If the composition of the cage complex formed from **L2** and Cu^{2+} is $\operatorname{Cu}_n(\mathbf{L2})_m$, $\underline{\mathbf{give}}$ the smallest integer combination of n and m. Assume that only the CO_2^- groups of **L2** form a coordination bond to Cu^{2+} ions.

L2
$$\theta = 90^{\circ}$$

A zinc complex, $Zn_4O(CH_3CO_2)_6$, contains four tetrahedral Zn^{2+} , six $CH_3CO_2^{-}$, and one O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of $CH_3CO_2^{-}$ are oriented orthogonal relative to each other. When p-benzenedicarboxylate (Fig. 3B, **L3**, θ = 180°) is used instead of $CH_3CO_2^{-}$, the Zn^{2+} clusters are linked to each other to form a crystalline solid (**X**) that is called a "porous coordination polymer" (Fig. 3C). The composition of **X** is $[Zn_4O(L3)_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

- **C.2 X** has a cubic unit cell with a side length of a (Fig. 3C) and a density of 0.592 5pt g cm⁻³. **Calculate** a in [cm].
- **C.3 X** এ যথেষ্ট পরিমাণে ছিদ্র রয়েছে, গ্রাম **X** 1 bar এবং 25 ডিগ্রি সেলসিয়াসে ছিদ্রগুলিতে 3.0×10^2 5pt mL of CO $_2$ gas নিতে পারে। প্রতি ছিদ্রে CO $_2$ অণুগুলির গড় সংখ্যা গণনা কর।


The Solid-State Chemistry of Transition Metals

Part A

A.1 (6 pt)			
<u>C</u> r ²⁺ :	_Δ _O , <u>Mn²⁺ :</u>	_Δ _O , <u>Co²⁺</u> :	Δ _O

A.2 (3 pt)

 $\underline{D}:$

 $\textbf{A.3} \; (3 \; \mathrm{pt})$

Part B

B.1 (6 pt)		
Λ.	D .	
A :	, <u>B</u> :	
	, <u>B</u> :	
A : B.2 (4 pt)	, <u>B</u> :	
	nm, $l_z=$	nm

B.4 (4 p	t)			

%

Part C			
C.1 (5 pt)			
n =	, <u>m</u> =		
C.2 (5 pt)			

cm

C.3 (5 pt)		

IChO Problem 7 Cover sheet

Please return this cover sheet together with all the related question sheets.

Playing with Non-benzenoid Aromaticity

	13	3 % of th	e total		
Question	A.1	A.2	A.3	B.1	Total
Points	5	2	19	10	36
Score					

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Photo courtesy: Tohoku Univ.

Part A

IChO

Lineariifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.

Q7-2
English (Official)

Inula linariifolia

A.1 Draw the structures of **2** and **6** and clearly identify the stereochemistry where 5pt necessary.

Then, ketone **4** is converted into ester **15**. Compound **8** (molecular weight: 188) retains all the stereocenters in **7**. Compounds **9** and **10** have five stereocenters and no carbon-carbon double bonds. Assume

Q7-3
English (Official)

that $H_2^{18}O$ is used instead of $H_2^{16}O$ for the synthesis of ^{18}O -labelled-lineariifolianones **13** and **14** from **11** and **12**, respectively. Compounds **13** and **14** are ^{18}O -labelled isotopomers. Ignoring isotopic labelling, both **13** and **14** provide the same product **15** with identical stereochemistry.

A.2 Choose the appropriate structure for **A**.

2pt

A.3 <u>Draw</u> the structures of **8–14** and clearly identify the stereochemistry where necessary. Also, <u>indicate</u> the introduced ¹⁸O atoms for **13** and **14** as shown in the example below.

Q7-5
English (Official)

18

Part B

Compound **19** is synthesized as shown below. In relation to non-benzenoid aromaticity, **19** can be used as an activator for alcohols, and **20** was converted to **22** via ion-pair intermediate **21**. Although the formation of **21** was observed by NMR, **21** gradually decomposes to give **18** and **22**.

¹H NMR (CD₃CN, ppm) **20**: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H) **21**: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

-HCI

19

20

B.1 Draw the structures of **17–19** and **21**. Identifying the stereochemistry is not necessary.

21

নন-বেনজেনয়েড অ্যারোমেটিসিটি নিয়ে খেলা

	13	3 % of th	e total		
Question	A.1	A.2	A.3	B.1	Total
Points	5	2	19	10	36
Score					

অধ্যাপক নোজি (১৯০২-১৯৯৬) নন-বেনজেনয়েড অ্যারোমেটিক যৌগগুলির গবেষণার ক্ষেত্রটি খোলেন, যা বর্তমানে জৈব রসা-য়নে সর্বত্র বিদ্যমান।

Photo courtesy: Tohoku Univ.

Lineariifolianone একটি অনন্য কাঠামোযুক্ত একটি প্রাকৃতিক যৌগ, যা Inula linariifolia থেকে পৃথক করা হয়। valencene(1), এক ধাপ পরিবর্তনে 2 উৎপন্ন হয়। তিন-ধাপ পরিবর্তনে 3 থেকে কিটন 4 উৎপন্ন হয়।

Eremophilene(5) চার ধাপে 6 এ পরিবর্তন করা হয়।

Inula linariifolia

Q7-2

Bengali (Bangladesh)

A.1 2 এবং 6 এর গাঠনিক সংকেত আঁক এবং যেখানে প্রয়োজন সেখানে স্টেরিওকেমিস্ট্রি পরিষ্কার- 5pt ভাবে সনাক্ত কর।

তারপরে, কিটোন 4 এস্টার 15-এ পরিবর্তন করা হয়। যৌগ 8 (মলিকুলার ওয়েট: 188) যৌগ 7 এর সকল স্টেরোসেন্টার রয়েছে। যৌগ 9 এবং 10 এর পাঁচটি স্টেরিওসেন্টার আছে এবং কোনও কার্বন-কার্বন ডাবল বন্ড নেই। H218O এর H2 পরিবর্তে 18O-ব্যবহার করে যৌগ 11 এবং 12 থেকে 18O লেবেল lineariifolianones যথাক্রমে 13 এবং 14 উৎপন্ন করা হয়। আইসোটোপিক লেবেল উপেক্ষা করে, উভয় 13 এবং 14 একই ধরনের এবং সম স্টেরিওরাসায়নিক উৎপাদ 15 দেয়।

Nal THF, 80 °C

9

BGD-4 C-7 Q-3

Bengali (Bangladesh)

13

9
$$C_{15}H_{20}F_{2}O$$
 $C_{15}H_{20}F_{2}O$ $C_{15}H_{20}^{18}O_{n}^{16}O_{3-n}$ $C_{15}H_{20}^{18}O_{n}^{1$

11

 $C_{15}H_{20}F_2O$

H₂¹⁸O, THF

A-এর জন্য উপযুক্ত গাঠনিক সংকেত বাছাই কর। **A.2**

2pt

8-14 যৌগের এর কাঠামো আঁক এবং যেখানে প্রয়োজন সেখানে স্টেরিওকেমিস্ট্রি পরিষ্কারভাবে 19pt **A.3** সনাক্ত কর। এছাড়াও, নীচের উদাহরণে প্রদর্শিত হিসাবে 13 এবং 14 এর জন্য প্রবর্তিত 180 পরমাণুর সংযুক্তি নির্দেশ কর।

Q7-5

Bengali (Bangladesh)

Part B

20

যৌগ 19 নীচে প্রদর্শিত হিসাবে সংশ্লেষিত হয়। নন-বেঞ্জেনয়েড অ্যারোমেটিসিটির সাথে সম্পর্কিত, 19 অ্যালকোহলের জন্য অ্যা-ক্টিভেটর হিসাবে ব্যবহার করা যেতে পারে, এবং 20 আয়ন-যুগল মধ্যবর্তী 21 এর মাধ্যমে 22 তে রূপান্তরিত হয়। যদিও 21 এর গঠন NMR দ্বারা পর্যবেক্ষণ করা হয়। 21 ধীরে ধীরে ভেঙ্গে 18 এবং 22 এ পরিণত হয়।

¹H NMR (CD₃CN, ppm) **20**: δ 7.4–7.2 (5H), 3.7 (2H), 2.8 (2H), 2.2 (1H)

-HCI

21: δ 8.5–7.3 (15H), 5.5 (2H), 3.4 (2H)

B.1 7–19 এবং 21 এর গাঠনিক সংকেত আঁক। স্টেরিওকেমিস্ট্রি সনাক্তকরণ প্রয়োজন নয়।

10pt

Playing with Non-benzenoid Aromaticity

Part A

2 (2 pt)	6 (3 pt)	

A.2 (2 pt)		

BGD-4 C-7 A-2

8 (3 pt)				
	\		\downarrow	
9 (2 pt)		10 (2 pt)		
	\		\	
11 (2 pt)		12 (2 pt)		
	\		\downarrow	
13 (4 pt)		14 (4 pt)		

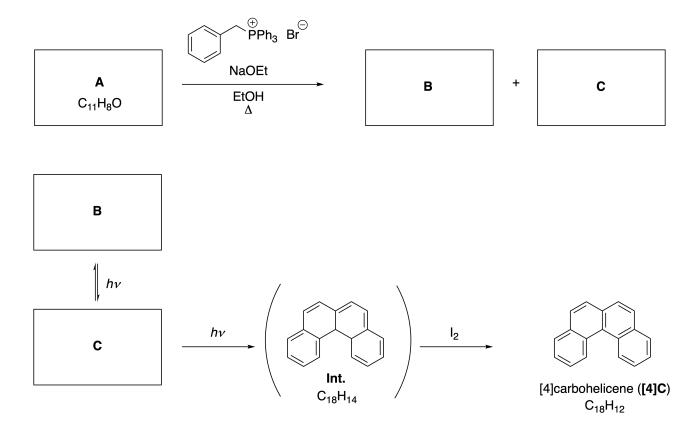
BGD-4 C-7 A-3

Part B

.1 (10 pt)	
17 (2 pt)	18 (2 pt)
19 (3 pt)	21 (3 pt)

IChO Problem 8 Cover sheet

Please return this cover sheet together with all the related question sheets.


Q8-1
English (Official)

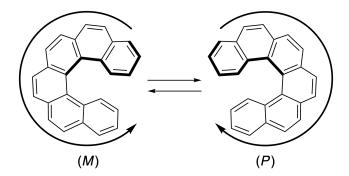
Dynamic Organic Molecules and Their Chirality

11 % of the total						
Question	A.1	A.2	A.3	B.1	B.2	Total
Points	9	3	7	3	4	26
Score						

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, n represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.



Q8-2
English (Official)

Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

A.1	<u>Draw</u> the structures of A-C . Stereoisomers should be distinguished.	9pt
A.2	Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product $\bf D$ whose molecular weight was 2 Da lower than that of [5]carbohelicene. The ¹ H NMR chemical shifts of $\bf D$ are listed below. Draw the structure of $\bf D$. [$\bf D$ (δ , ppm in CS ₂ , r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]	3pt

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (M) or (P) as shown below.

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation

Q8-3
English (Official)

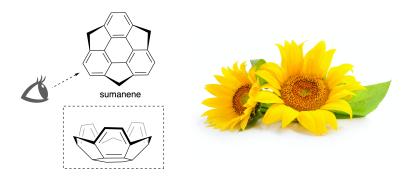
Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound \mathbf{E} contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as (P, P, P) as shown below.

$$(1, 2, 3) = (P, P, P)$$

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of \mathbf{F} , (P)- \mathbf{F} , multiple helicene \mathbf{G} ($C_{66}H_{36}$) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of \mathbf{G} formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and M and P labels according to the same numbering. For instance, the other stereoisomers of \mathbf{E} should be listed as (1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), and (M, P, M).

$$\begin{array}{c} Ni(cod)_2 \\ \\ Br \end{array}$$

$$\begin{array}{c} \text{Ni(cod)}_2 \\ \\ \text{Br} \\ \\ (P)\text{-F} \end{array}$$


7pt

Q8-4
English (Official)

Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

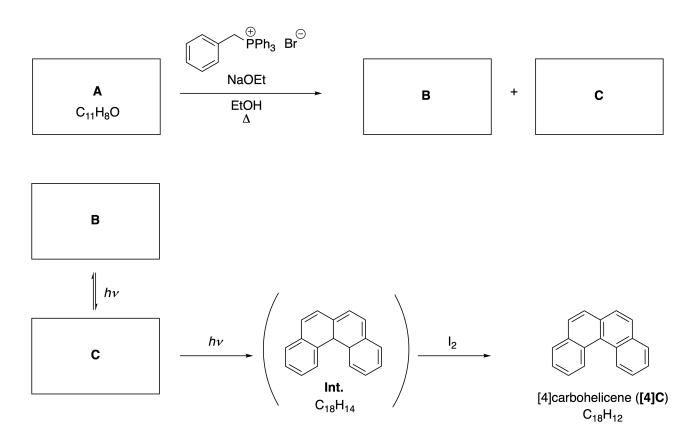
Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 Draw the structure of intermediate **I** (its stereochemistry is not required).

3pt

$$\begin{array}{c} \text{Me} \\ \text{Ru}^{\star} \\ \text{Me} \\ \text{J} \end{array}$$

B.2 Starting from the optically active precursor **J**, the same reaction sequence gives the optically active sumanene derivative **K**. The stereocenters in **J** suffer no inversion during the metathesis reaction. **Draw** the structure of **K** with the appropriate stereochemistry.


Q8-1
Bengali (Bangladesh)

গতিশীল জৈব অণু এবং তাদের কাইরালিটি

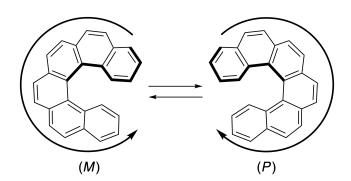
		11 % (of the to	tal		
Question	A.1	A.2	A.3	B.1	B.2	Total
Points	9	3	7	3	4	26
Score						

Part A

ক্রমাগত অর্থো-সংযোগ পলিসাইক্লিক অ্যারোমেটিক হাইড্রোকার্বনগুলিকে বলা হয় [n] [n]carbohelicenes। (এখানে, n ছয়-মেম্বারযুক্ত রিংয়ের সংখ্যা উপস্থাপন করে) (নীচে দেখ)। [4]Carbohelicene ([4]C) নীচের চিত্রের মতো ফটো সংশ্লেষণ ব্যবহার করে একটি ইন্টারমিডিয়েটের মাধ্যমে প্রস্তুত করা হয়, যা সহজেই আয়োডিন দ্বারা জারিত হয়।

ফটো-বিক্রিয়া নিম্নলিখিত উদাহরণের অনুরূপ পদ্ধতিতে হয়।

Q8-2


Bengali (Bangladesh)

দ্রষ্টব্য: ৮ নং প্রশ্নের জন্য, কার্বোহেলিকিনের উদাহরণগুলিতে বর্ণিত সমস্যার জন্য আপনার উত্তরগুলিতে বিকল্প একক এবং ডাবল বন্ডগুলি আঁকতে হবে। সংযুক্ত পাই সিস্টেমের জন্য বৃত্ত ব্যবহার করবে না।

A.1 A – C এর কাঠামো আঁক। স্টিরিও-আইসোমারগুলিকে আলাদা করে দেখাও। 9pt	A.1	A – C এর কাঠামো আঁক। স্টিরিও-আইসোমারগুলিকে আলাদা করে দেখাও।	9pt
--	-----	---	-----

A.2 একই ফসফোনিয়াম লবণ এবং একটি উপযুক্ত প্রারম্ভিক যৌগ থেকে কার্বোহেলিনসিনকে সংশ্লে- 3pt ষিত করার করার ফলে কেবলমাত্র [5] কার্বোহেলিসিনের অল্প পরিমাণ তৈরি হয়, তার পরিবর্তে প্রোডাক্ট D যার আণবিক ওজন [5]কার্বোহেলিসিনের চেয়ে 2 Da কম। The 1H NMR chemical shifts of D are listed below. Draw the structure of D. [D (δ, ppm in CS2, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

5 -এবং বৃহত্তর [n] কার্বোহেলিসিনের হেলিকাল কাইরালিটি রয়েছে এবং এই হেলিকেনিসগুলির এন্যানসিওমারের মধ্যে আন্তঃ রূপান্তর কক্ষ তাপমাত্রায় উল্লেখযোগ্যভাবে ধীর গতির। n- কার্বোহেলিসিনেসের কাইরালিটি (M) বা (P) হিসাবে নীচে সংজ্ঞায়িত করা হয়েছে।

[n] কার্বোহেলিসিনগুলি, যদি n > 4 হয়, তবে, তাদেরকে একটি কাইরাল কলাম ক্রোমাটোগ্রাফির দ্বারা এন্যানটিওমেরিকভাবে পৃথক করা যায়, যা প্রফেসর ইউশিও ওকামোটো উন্নয়ন করেছিলেন।

Photo courtesy: The Japan Prize Foundation

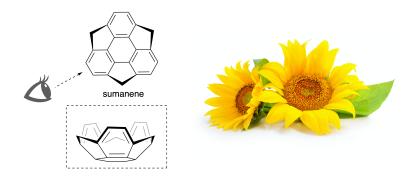
Bengali (Bangladesh)

7pt

একাধিক হেলিসিন হ'ল অণু যাতে দুটি বা ততোধিক হেলিসিন জাতীয় কাঠামো থাকে। যদি এর হেলিকাল কাইরালিটি বিবেচ-না করা হয়, তবে একাধিক হেলিসিনে বেশ কয়েকটি স্টেরিওসোমার রয়েছে। উদাহরণস্বরূপ, যৌগ E-তে একটি অণুতে তিনটি [5]কার্বোহেলিসিন-জাতীয় ক্ষুদ্র অংশ (moiety) রয়েছে। স্টিরিওআইসোমারগুলির মধ্যে একটিকে নীচে দেখানো (P,P,P) হিসাবে বর্ণনা করা হয়েছে।

$$(1, 2, 3) = (P, P, P)$$

1,2-ডাইব্রোমোবেঞ্জেনের নিকেল-মধ্যস্থতাযুক্ত ট্রাইমারিকরণে triphenylene তৈরি করে। যখন **A.3** একই বিক্রিয়াটি F, (P)-F, এর এন্যানসিওমারের ক্ষেত্রে প্রয়োগ করা হয়, তখন একাধিক হেলিসিন G (C66H36) পাওয়া যায়। দেয়া আছে যে, স্টেরিওসোমারদের মধ্যে আন্তঃ রূপান্তর বিক্রিয়ার সময় ঘটে না। পনরাবৃত্তি ছাডাই এই প্রক্রিয়াটিতে গঠিত G এর সমস্ত সম্ভাব্য স্টেরিওআইসোমার-দের সনাক্ত কর। একটি নমুনা হিসাবে, আইসোমার সংখ্যার লেবেল সহ উপরের উদাহরণ হিসাবে সংজ্ঞায়িত কাইরালিটি সম্পূর্ণরূপে আঁকতে হবে; অন্যান্য স্টেরিওআইসোমারগুলি একই নম্বর অনু-সারে লোকেশন এবং M এবং P লেবেলের সাথে তালিকাবদ্ধ থাকতে হবে। উদাহরণস্বরূপ, E-এর অন্যান্য স্টেরিওআইসোমারদের তালিকাভুক্ত নিম্ন রুপে করা যেতে পারে। (1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), and (M, P, M).


$$\begin{array}{c} \text{Ni(cod)}_2 \\ \\ \\ \text{Br} \\ \\ \\ \text{(P)-F} \end{array}$$

Q8-4
Bengali (Bangladesh)

Sumanene একটি বাটি আকারের হাইড্রোকার্বন যা ২০০৩ সালে প্রথম জাপানে প্রকাশিত হয়েছিল। "সুমনেন" নামটি সংস্কৃত-হিন্দি শব্দ "সুমন" থেকে এসেছে যার অর্থ সূর্যমুখী।

সুমেনেন সংশ্লেষণটি একটি রিং-ওপেনিং এবং একটি রিং-ক্লোজিং মেটাথেসিস বিক্রিয়া দ্বারা অর্জন করা হয়েছে।

একটি রুথেনিয়াম অনুঘটক (Ru*) দ্বারা অনুঘটকিত মেথাসিসের বিক্রিয়াগুলি নীচে দেখানো হয়েছে।

B.1 মধ্যবর্তী I-এর গাঠনিক সংকেত আঁক (এর স্টেরিওকেমিস্ট্রি প্রয়োজন হবে না)।

আলোক সক্রিয় precursor-**J** থেকে শুরু করে, একই বিক্রিয়া আলোক সক্রিয় sumanene ডেরিভেটিভ **K** দেয়। **J** স্টেরিওসেন্টার মেটাথিসিসের বিক্রিয়া চলাকালীন কোনও ইনভার্সন দেখায় না। উপযুক্ত স্টেরিওকেমিস্ট্রি দিয়ে **K**-এর গাঠনিক সংকেত আঁক। **B.2** 4pt

Dynamic Organic Molecules and Their Chirality

Part A

A.1 (9 pt)					
A (3 pt)	B (3 pt)	C (3 pt)			
A.2 (3 pt)					

A.3 (7 pt)	

Part B

B.1 (3 pt)		
B.2 (4 pt)		

IChO Problem 9 Cover sheet

Please return this cover sheet together with all the related question sheets.

Q9-1
English (Official)

Likes and Dislikes of Capsule

10 % of the total						
Question	A.1	A.2	A.3	A.4	A.5	Total
Points	13	2	2	3	3	23
Score						

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds **1** and **2** were synthesized as U-shaped molecules with different sizes. Compound **3** was prepared as a comparison of **1** and the encapsulation behavior of these compounds was investigated.

Q9-2
English (Official)

The synthetic route to $\bf 2$ is shown below. The elemental composition of compound $\bf 9$: C; 40.49%, H; 1.70%, and O; 17.98% by mass.

Q9-3
English (Official)

A.1 <u>**Draw**</u> the structures of **4–9**; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of *p*-methoxybenzyl group shown in the scheme above.

In the mass spectrum of 1, the ion peak corresponding to its dimer ($\mathbf{1}_2$) was clearly observed, whereas an ion peak for $\mathbf{3}_2$ was not observed in the spectrum of 3. In the ^1H NMR spectra of a solution of $\mathbf{1}_2$, all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3. These data indicate that hydrogen bonds are formed between the NH moieties of 1 and atoms X of another molecule of 1 to form the dimeric capsule.

A.2	<u>Circle</u> all the appropriate atom(s) X in 1 .	2pt
A.3	Give the number of the hydrogen bonds in the dimeric capsule (1_2) .	2pt

Q9-4
English (Official)

The dimeric capsule of $\mathbf{1}$ ($\mathbf{1}_2$) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

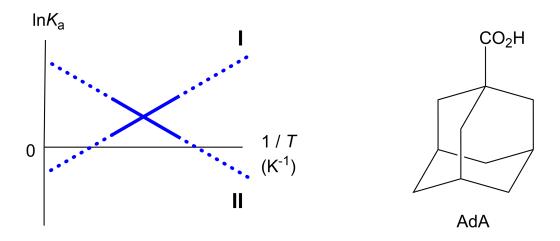
$$\mathsf{Z} + \mathsf{1}_2 \to \mathsf{Z} @ \mathsf{1}_2 \tag{1}$$

The equilibrium constant of the encapsulation of Z into $\mathbf{1}_2$ is given as below:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z} @ \mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, $\mathbf{1}_2$ in $\mathsf{C}_6\mathsf{D}_6$ gave different signals in the $^1\mathsf{H}$ NMR spectra before and after addition of CH_4 .

Compound **2** also forms a rigid and larger dimeric capsule ($\mathbf{2}_2$). The ^1H NMR spectrum of $\mathbf{2}_2$ was measured in C_6D_6 , $\text{C}_6\text{D}_5\text{F}$, and a $\text{C}_6\text{D}_6/\text{C}_6\text{D}_5\text{F}$ solvent mixture, with all other conditions being kept constant. The chemical shifts for the H^a proton of **2** in the above solvents are summarized below, and no other signals from the H^a in **2**, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.


solvent	δ (ppm) of H a
C_6D_6	4.60
C ₆ D ₅ F	4.71
C_6D_6 / C_6D_5F	4.60, 4.71, 4.82

A.4 <u>Determine</u> the number of C_6D_6 and C_6D_5F molecules encapsulated in $\mathbf{2}_2$ giving 3pt each H^a signal.

 1 H NMR measurements in C_6D_6 revealed that $\mathbf{2}_2$ can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@ $\mathbf{2}_7$] denotes a species containing one or more solvent molecules.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Similarly, the $K_{\rm a}$ values of CH₄ and 1₂ given as eq (2) at various temperatures in C₆D₆ were also determined by ¹H NMR measurements. The plots of the two association constants (as $\ln K_{\rm a}$ vs 1/T) are shown below.

No C_6D_6 molecule is encapsulated in $\mathbf{1}_2$. In line \mathbf{II} , the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line \mathbf{II} is (3). Therefore, line \mathbf{II} corresponds to (4), and line \mathbf{II} corresponds to (5).

A.5 Choose the correct options in gaps (1)–(5) in the following paragraph from A 3pt and B.

	A	В
(1)	positive	negative
(2)	positive	negative
(3)	ΔS	ΔH
(4)	1_2 and CH_4	2_2 and AdA
(5)	1_2 and CH_4	2_2 and AdA

Q9-1
Bengali (Bangladesh)


Likes and Dislikes of Capsule

		10 % (of the to	tal		
Question	A.1	A.2	A.3	A.4	A.5	Total
Points	13	2	2	3	3	23
Score						

ভাল বাচ্চারা এটি করে না, তবে তুমি যদি টেনিস বলটি অশোভন কর, তুমি এটি দুটি U-আকারে দুটি টুকরোয় বিচ্ছিন্ন করতে পার।

এই ধারণার ভিত্তিতে, 1 এবং 2 যৌগগুলি বিভিন্ন আকারের ইউ-আকারের অণু হিসাবে সংশ্লেষিত করা হয়। যৌগ 3 প্রস্তুত করা হয়েছিল 1 এর সাথে তুলনা করে এবং এই যৌগগুলির এনক্যাপসুলেশন আচরন নিয়ে গবেষণা করা হয়।

IChO

Bengali (Ban

2 এর সিন্থেটিক রুট নীচে দেখানো হয়েছে। যৌগ 9 এর প্রাথমিক গঠন : C; 40.49%, H; 1.70%, এবং O; 17.98% ভর অনুযায়ী।

Q9-3
Bengali (Bangladesh)

 $(= Ti^{0})$

A.1 4-9 এর কাঠামো আঁক; স্টেরিওরসায়ন অবহেলা করা যেতে পারে। উপরের স্কিমটিতে দেখানো pmethoxy benzyl গ্রুপের পুরো কাঠামো আঁকার পরিবর্তে একটি বিকল্প হিসাবে "PMB" ব্যবহার কর।

Bengali (Bangladesh)

1 এর ভর বর্ণালীতে, এর ডাইমার ($m{1}_2$) এর সাথে সম্পর্কিত আয়ন চুড়াটি পরিষ্কারভাবে পরিলক্ষিত হয়, যেখানে 3 এর বর্ণালীতে $m{3}_2$ এর আয়ন চুড়া পরিলক্ষিত হয়নি। 1 H NMR বর্ণালীতে, সমস্ত NH প্রোটন ($m{1}_2$) এর দ্রবনের 1 থেকে উদ্ভূত রাসায়নিক হিসাবে সমতুল্য হিসাবে পরিলক্ষিত হয়, এবং তাদের রাসায়নিক স্থানান্তর 3 এর NH প্রোটনগুলির তুলনায় উল্লেখযোগ্যভাবে পৃথক ছিল। এই তথ্যগুলি দেখায় যে হাইড্রোজেন বন্ধনগুলি 1 এর NH moieties এবং 1 এর অন্য একটি অণুর X পরমাণুর মাধ্যমে গঠিত হয়েছে dimeric ক্যাপসুল।

A.2	1 এর X এ সমস্ত উপযুক্ত পরমাণু (গুলি) বৃত্ত কর।	2pt
A.3	ডাইমারিক ক্যাপসুলে (1_2) হাইড্রোজেন বন্ধনের সংখ্যা দাও।	2pt

Q9-5

Bengali (Bangladesh)

ডাইমারিক ক্যাপসুল 1 (1_2) এর একটি অভ্যন্তরীণ স্থান রয়েছে যেখানে উপযুক্ত ছোট অণু Z-কে এনক্যাপ্সুলেট করা যায়। এই ঘটনাটি নিম্নলিখিত সমীকরণ দ্বারা প্রকাশ করা হয়:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

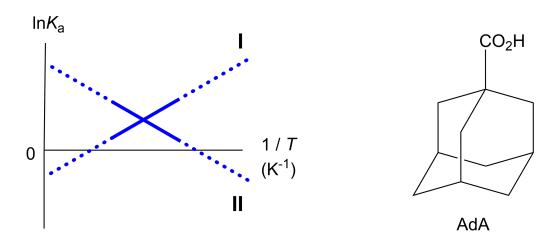
 $\mathbf{1}_2$ এর সাথে Z-এর encapsulation এর সাম্যধ্রুবকটি নীচে দেওয়া হয়েছে:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z} @ \mathbf{1}_2]}{|\mathsf{Z}|[\mathbf{1}_2]} \tag{2}$$

একটি ক্যাপসুলের মধ্যে একটি অণুর encapsulation, NMR বর্ণালী দ্বারা পর্যবেক্ষণ করা যেতে পারে। উদাহরণস্বরূপ, C_6D_6 -এ $\mathbf{1}_2$ $\mathrm{CH_4}$ যোগ করার আগে এবং পরে $^1\mathrm{H}$ NMR বর্ণালীতে বিভিন্ন সংকেত দেয়।

যৌগ ${\bf 2}$ একটি অনমনীয় এবং বৃহত্তর ডাইম্রিক ক্যাপসুল (${\bf 2}_2$) গঠন করে। (${\bf 2}_2$) এর $^1{\bf H}$ NMR বর্ণালীটি ${\bf C}_6{\bf D}_6$, ${\bf C}_6{\bf D}_5$ F, এবং একটি ${\bf C}_6{\bf D}_6/{\bf C}_6{\bf D}_5$ F দ্রাবক মিশ্রণে পরিমাপ করা হয়েছে, অন্য সমস্ত শর্ত স্থির রেখেছে। উপরের দ্রাবকগুলিতে ${\bf 2}$ এর ${\bf H}^a$ প্রোটনের রাসায়নিক পরিবর্তনগুলি নীচে সংক্ষিপ্ত করা হয়েছে। ধরে নাও যে ক্যাপসুলের অভ্যন্তর সর্বদা সর্বাধিক সংখ্যক দ্রাবক অণুতে ভরা থাকে এবং প্রতিটি সংকেত ভরাট ক্যাপসুলের একটি প্রজাতির সাথে মিলে যায়।

solvent	δ (ppm) of H ^a
C_6D_6	4.60
C ₆ D ₅ F	4.71
C_6D_6 / C_6D_5F	4.60, 4.71, 4.82


A.4 প্রতিটি H^a সংকেতের জন্য $\mathbf{2}_2$ এ এনক্যাপ্সুলেটেড $\mathsf{C}_6\mathsf{D}_6$ এবং $\mathsf{C}_6\mathsf{D}_5\mathsf{F}$ অণুর সংখ্যা নির্ধারণ কর। 3pt

 ${\sf C_6D_6}$ -এ ${}^1{\sf H}$ NMR পরিমাপ থেকে জানা গেছে যে ${\bf 2_2}$ টি 1-adamantanecarboxylic acid (AdA) এর একটি অণু অন্তর্ভুক্ত করতে পারে, এবং বিভিন্ন তাপমাত্রার জন্য নির্নায়িত সমন্বয় ধ্রুবক $(K_{\sf a})$ যা নীচে প্রকাশ করা হয়েছে । [দ্রাবক@ ${\bf 2_2}$] এক বা একাধিক দ্রাবক অণুযুক্ত একটি গোষ্ঠী বোঝায়।

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

একইভাবে, $\mathrm{CH_4}$ এবং $\mathrm{1_2}$ -এর K_a -এর মানগুলি বিভিন্ন তাপমাত্রায় eq (2)-এ $\mathrm{C_6D_6}$ এ $^1\mathrm{H}$ NMR নির্নয় দ্বারাও নির্ধারন করা হয়েছিল। দুটি সমন্বয় ধ্রুবকের প্লটগুলি ($\mathrm{ln}\ K_\mathrm{a}$ vs 1/T) নীচে দেখানো হয়েছে।

কোনও C_6D_6 অণু $\mathbf{1}_2$ এ এনক্যাঙ্গ্মলেটেড করা হয়নি। \mathbf{II} লাইনে, এনট্রপি পরিবর্তন (ΔS) (1) এবং এনথালপি পরিবর্তন (ΔH) হ'ল (2), এটি সূচিত করে যে, দ্বিতীয় লাইনের এনক্যাঙ্গ্মলেশনের জন্য চালিকা শক্তি (3)। সুতরাং, লাইন \mathbf{I} (4) এর সাথে সম্পর্কিত, এবং \mathbf{II} লাইনটি (5) এর সাথে সম্পর্কিত।

A.5	A এবং B থেকে নিম্নলিখিত অনুচ্ছেদে ফাঁকা (1) - (5) এর সঠিক বিকল্পগুলি বেছে নাও।	3pt
,	That the ever man is engaged that (1) (5) and most introduced most	JPt

	A	В
(1)	positive	negative
(2)	positive	negative
(3)	ΔS	ΔH
(4)	1_2 and CH_4	2_2 and AdA
(5)	$oldsymbol{1}_2$ and $ extsf{CH}_4$	2_2 and AdA

Likes and Dislikes of Capsule

4 (2 pt)	5 (3 pt)	
6 (2 pt)	7 (2 pt)	
8 (2 pt)	9 (2 pt)	

A.2 (2 pt)		
	0 0	
	HN N NH	
	Ph Ph Ph N, NH	Ph □
	\uparrow	
	0 0	

A.3 (2 pt)

A.4 (3 pt)

δ (ppm) of H $^{\rm a}$	numbers of C ₆ D ₆	numbers of C ₆ D ₅ F
4.60 ppm		
4.71 ppm		
4.82 ppm		

A.5 (3 pt)			
<u>(1)</u> :	(2):	(3):	
(4) :	(5):		