BEL-3 C-0 C-1

BEL-3 C-0 C Louis Pecheur

IChO General instructions Cover sheet

Please return this cover sheet together with all the related question sheets.

G

Olympiade Internationale de Chimie 2021 Japon 53^{me} IChO2021 Japon 25 Juillet – 2 Août 2021 https ://www.icho2021.org

BEL-3 C-0 G-1

Consignes générales

- Vous devez écrire uniquement au stylo.
- Votre calculatrice doit être non-programmable.
- Ce sujet est composé de 9 problèmes.
- Vous pouvez résoudre les problèmes dans n'importe quel ordre.
- Vous aurez 5 heures pour résoudre tous les problèmes.
- Vous pouvez **commencer** à écrire seulement après que la consigne **START** a été donnée.
- Tous les résultats doivent être écrits au stylo dans les cadres réservés à cet effet sur les **documents réponse**. Vous pouvez utiliser le verso du sujet comme brouillon si besoin. N'oubliez pas que les réponses écrites en dehors des cadres ne seront pas prises en compte.
- Écrivez les calculs pertinents dans les cadres appropriés lorsque nécessaire. La totalité des points ne sera accordée aux bonnes réponses que si vous montrez les étapes de votre travail.
- Le surveillant indiquera le temps restant **30 minutes** avant la consigne **STOP** de fin d'épreuve.
- Vous **devez arrêter** de composer au moment précis où la consigne **STOP** est donnée. Si vous n'arrêtez pas d'écrire, vous vous verrez attribuer la note de 0 à l'ensemble de l'épreuve.
- La version officielle en anglais du sujet est disponible sur demande, à des fins de clarification uniquement.
- Il vous est interdit de quitter votre place sans autorisation. Si vous avez besoin d'assistance (dysfonctionnement de calculatrice, pause toilettes,...), levez la main jusqu'à l'arrivée du surveillant.

Bonne chance!

Informations sur les problèmes et le barème

	Titre	Total des points	Pourcentage
1	Hydrogène à la surface d'un métal	24	11
2	Capsule temporelle d'isotopes	35	11
3	Loi de Beer-Lambert	22	8
4	L'oxydo-réduction du Zinc	32	11
5	Ce mystérieux silicium	60	12
6	Chimie du solide et métaux de transition	45	13
7	Jouons avec l'aromaticité de composés non benzéniques	36	13
8	Molécules organiques dynamiques et leur chiralité	26	11
9	Liaisons dangereuses dans les capsules	23	10
		Total	100

BEL-3 C-0 G-3

Constantes physiques et équations

Constantes

Vitesse de la lumière dans le vide	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
Constante de Planck	$h = 6.62607015 \times 10^{-34} \mathrm{J \ s}$
Charge élémentaire	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Masse de l'électron	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Permittivité diélectrique du vide	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Constante d'Avogadro	$N_{\rm A} = 6.02214076 \times 10^{23}{\rm mol^{-1}}$
Constante de Boltzmann	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Constante de Faraday	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Constante des gaz parfaits	$R = N_{\rm A} \times k_{\rm B} = 8.31446261815324~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$
Constante des gaz parlaits	$= 8.2057366081 imes 10^{-2} \mathrm{L} \;\mathrm{atm}\;\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Unité de masse atomique	$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$
Pression standard	$p=1bar=10^5Pa$
Pression atmosphérique	$p_{atm} = 1.01325 imes 10^5 Pa$
Zéro degré Celsius	$0^{\circ}\mathrm{C} = 273.15\mathrm{K}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
Picomètre	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Electronvolt	$1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}$
Partie par million	$1 \mathrm{ppm} = 10^{-6}$
Partie par milliard	$1 ppb = 10^{-9}$
Partie par billion	$1 \mathrm{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
Base du logarithme naturel	e = 2.718281828459045

Equations

Loi des gaz parfaits	PV = nRT
	, où P est la pression, V est le volume, n est la quantité de matière, T est
	la température absolue du gaz idéal.
Loi de Coulomb	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, où <i>F</i> est la force électrostatique, $k_e (\simeq 9.0 \times 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2})$ est la constante de Coulomb, q_1 et q_2 sont la valeur des charges, et <i>r</i> est la distance séparant les charges.
Premier principe de la	$\Delta U = q + w$
thermodynamique	, où ΔU est la variation d'énergie interne, q est la chaleur fournie, et w est le travail fourni.
Enthalpie H	H = U + PV
Entropie S exprimée en	$S = k_{B} \ln W$
fonction du principe de Boltzmann	, où W est le nombre de microétats.
Variation de l'entropie	$\Delta S = \frac{q_{rev}}{2}$
ΔS	$\Delta z = T$ où a est la chaleur fournie de manière réversible
Energielibre de Gibbs,	G = H - TS
ou entrialple libre G	$\Delta_{\rm r}G = -RI \prod K = -ZFL$
	potentiel standard de l'électrode.
Quotient de réaction Q	$\Delta_{\mathbf{r}}G = \Delta_{\mathbf{r}}G^{\circ} + RT\ln Q$
	Pour une réaction
	$a\mathbf{A} + b\mathbf{B} \rightleftharpoons c\mathbf{C} + d\mathbf{D}$
	$Q = \frac{\left[C\right]^{c}\left[D\right]^{a}}{c}$
	$[A]^a[B]^b$
	, où [A] est la concentration de A.

Quantité de chaleur Δq	$\Delta q = nc_{\rm m}\Delta T$, où $c_{\rm m}$ est la chaleur molaire spécifique , indépendante de la température.
Equation de Nernst pour les réactions d'oxydo-réduction	$E = E^{\circ} + \frac{RT}{zF} \ln \frac{C_{\rm ox}}{C_{\rm red}}$, où $C_{\rm ox}$ est la concentration de l'oxydant, $C_{\rm red}$ est la concentration du réducteur.
Equation d'Arrhenius	$\begin{split} k &= A \exp\left(-\frac{E_a}{RT}\right)\\ \text{, où } k \text{ est la constante de vitesse, } A \text{ est le facteur préexponentiel, } E_a \text{ est }\\ \text{l'énergie d'activation.}\\ \exp(x) &= e^x \end{split}$
Equation de Lambert– Beer	$A = \varepsilon lc$, où A est l'absorbance, ε est le coefficient d'extinction molaire, l est la lon- gueur du chemin optique, c est la concentration de la solution.
Equation de Henderson–Hasselbalch	Pour un équilibre $HA \rightleftharpoons H^+ + A^-$, où la constante d'équilibre est K_a , $pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$
Energie d'un photon	$E = h\nu = h\frac{c}{\lambda}$, où ν est la fréquence, λ est le longueur d'onde de la lumière.
Somme de la série géo- métrique	Si $x \neq 1$, alors $1 + x + x^2 + \dots + x^n = \sum_{i=0}^n x^i = \frac{1 - x^{n+1}}{1 - x}$
Approximation utile pour résoudre certains problèmes	Si $x \ll 1$, alors $\frac{1}{1-x} \simeq 1+x$

G0-6 French Belgium (Belgium)

BEL-3 C-0 G-6

Tableau periodique

18	² Helium 4.003	10 Neon 20.180	¹⁸ Ar Argon 39.948	36	Krypton	83.798	Xe Xe	Xenon 131.293	86	Rn	Radon [222]	118	ဝိ	[294]						
17		9 F Fluorine 18.998	17 CI Chlorine 35.452	35	Bromine	79.904	<u>в</u> —	lodine 126.904	85	At	Astatine [210]	117	s	[293]	71	Ľ	Lutetium 174.967	103	5	Lawrencium [262]
16		⁸ O ^{Oxygen} 15.999	16 Suffur 32.068	34	Selenium	78.971	52 Te	Tellunum 127.60	84	Ро	Polonium [210]	116	2	[293]	20	Υb	Ytterbium 173.045	102	No	Nobelium [259]
15		7 N Nitrogen 14.007	15 P Phosphorus 30.974	33	AS Arsenic	74.922	s ⁵¹	Antimony 121.760	83	Ξ	Bismuth 208.98	115	Mc	[289]	69	Tm	Thulium 168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	14 Silicon 28.085	32	Germanium	72.630	s n	™ 118.710	82	Pb	Lead 207.2	114 1	L	[289]	68	ш	Erbium 167.259	100	ШШ	Fermium [257]
13		5 В Boron 10.814	13 Aluminium 26.982	31	Gallium Gallium	69.723	49 h	Indium 114.818	81	F	Thallium 204.384	113	L Z	[278]	67	Я	Holmium 164.930	66	Ës	Einsteinium [252]
12				30	Zn ^{Zinc}	65.38	⁴⁸ Cd	Cadmium 112.414	80	Нg	Mercury 200.592	112	ร	[285]	99	D	Dysprosium 162.500	86	ŭ	Californium [252]
11		active element]		29	Cu	63.546	Aq	silver 107.868	62	Au	Gold 196.967	ŧ	ğ	[280]	65	Tb	Terbium 158.925	67	番	Berkelium [247]
10		s for the radio		28	Nickel	58.693	46 Pd	Palladium 106.42	78	Ę	Platinum 195.084	110	ട്പ	[281]	64	Gd	Gadolinium 157.25	96	с С	curium [247]
ი		[in parenthesi		27	Cobalt Cobalt	58.933	⁴⁵ Rh	Rhodium 102.906	17	Г	Indium 192.217	109	Mt	[276]	63	Еu	Europium 151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		26	Fe Le	55.845	Ru Bu	Ruthenium 101.07	76	So	^{Osmium} 190.23	108	S L	[277]	62	Sm	Samarium 150.36	96	Pu	Plutonium [239]
7	Key:	113 Nhonium [278]		25	Mn ^{Manganese}	54.938	⁴³ Tc	Technetium [99]	75	Re	Rhenium 186.207	107	Вh	[272]	61	Pm	Promethium [145]	88	dN	Neptunium [237]
9				24	Chromium Chromium	51.996	42 Mo	Molybdenum 95.95	74	≥	Tungsten 183.84	106	sg	[271]	60	ΡN	Neodymium 144.242	66		Uranium 238.029
5				53	Vanadium	50.942	⁴¹ Nb	Niobium 92.906	73	Та	Tantalum 180.948	105	പ	[268]	59	Ъ	Praseodymium 140.908	91	Pa	Protactinium 231.036
4				22	Titanium	47.867	40 Zr	zirconium 91.224	72	Ŧ	Hafhium 178.49	104	Ŧ	[267]	58	Se	Cerium 140.116	06	Th	Thorium 232.038
ε				21	Scandium	44.956	د 39	Yttrium 88.906	57-71	La-Lu	Lanthanoids	89-103	AC-Lr	Acuilous	57	La	Lanthanum 138.905	89	Ac	Actinium [227]
2		4 Be Beryllium 9.012	12 Mg Magnesium 24.306	20	Calcium	40.078	» م	strontium 87.62	56	Ba	Barium 137.327	⁸⁸ (На	[226]	57-71	La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids
-	Hydrogen 1.008	3 Lithium 6.968	11 Na Sodium 22.990	19	$F^{Potassium}$	39.098	۳۵ Bb	Rubidium 85.468	55	ပိ	Caesium 132.905	87	Ľ	[223]						

BEL-3 C-0 G-7

¹H NMR Chemical Shifts

BEL-3 C-0 G-1

International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org

General Instruction

- You are allowed to use only pen to write the answer.
- Your calculator must be non-programmable.
- This examination has **9 problems**.
- You can solve the problems in any order.
- You will have **5 hours** to solve all problems.
- You can **begin** working only after the **START** command is given.
- All results must be written in the appropriate answer boxes with pen on the **answer sheets**. Use the back of the question sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the **STOP** command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your examination.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems and Grading Information

	Title	Total Score	Percentage
1	Hydrogen at a Metal Surface	24	11
2	Isotope Time Capsule	35	11
3	Lambert–Beer Law?	22	8
4	The Redox Chemistry of Zinc	32	11
5	Mysterious Silicon	60	12
6	The Solid-State Chemistry of Transition Metals	45	13
7	Playing with Non-benzenoid Aromaticity	36	13
8	Dynamic Organic Molecules and Their Chirality	26	11
9	Likes and Dislikes of Capsules	23	10
		Total	100

Physical Constants and Equations

Constants

Speed of light in vacuum	$c = 2.99792458 \times 10^8 \mathrm{m \ s^{-1}}$
Planck constant	$h = 6.62607015 \times 10^{-34} \mathrm{J \ s}$
Elementary charge	$e = 1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass	$m_{\rm e} = 9.10938370 \times 10^{-31}{\rm kg}$
Electric constant (permittivity of vacuum)	$\varepsilon_0 = 8.85418781 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
Avogadro constant	$N_{\rm A} = 6.02214076 imes 10^{23} { m mol}^{-1}$
Boltzmann constant	$k_{\rm B} = 1.380649 \times 10^{-23} {\rm J} {\rm K}^{-1}$
Faraday constant	$F = N_{\rm A} \times e = 9.64853321233100184 \times 10^4 {\rm C \ mol^{-1}}$
Gas constant	$R = N_{\rm A} \times k_{\rm B} = 8.31446261815324 \; {\rm J} \; {\rm K}^{-1} \; {\rm mol}^{-1}$
	$= 8.2057366081 imes 10^{-2} \mathrm{L} \;\mathrm{atm}\;\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Unified atomic mass unit	$u = 1 \text{ Da} = 1.66053907 \times 10^{-27} \text{ kg}$
Standard pressure	$p=1bar=10^5Pa$
Atmospheric pressure	$p_{atm} = 1.01325 imes 10^5 Pa$
Zero degree Celsius	$0 ^{\circ}\mathrm{C} = 273.15 \mathrm{K}$
Ångstrom	$1 \text{ Å} = 10^{-10} \text{ m}$
Picometer	$1 \mathrm{pm} = 10^{-12} \mathrm{m}$
Electronvolt	$1 \mathrm{eV} = 1.602176634 \times 10^{-19} \mathrm{J}$
Part-per-million	$1 \mathrm{ppm} = 10^{-6}$
Part-per-billion	$1 ppb = 10^{-9}$
Part-per-trillion	$1 \mathrm{ppt} = 10^{-12}$
pi	$\pi = 3.141592653589793$
The base of the natural logarithm (Euler's number)	e = 2.718281828459045

Equations

The ideal gas law	PV = nRT
-	, where P is the pressure, V is the volume, n is the amount of substance,
	<i>T</i> is the absolute temperature of ideal gas.
Coulomb's law	$F = k_{e} \frac{q_1 q_2}{r^2}$
	, where F is the electrostatic force, $k_e (\simeq 9.0 \times 10^9 \mathrm{N}\mathrm{m^2}\mathrm{C^{-2}})$ is Coulomb's constant, q_1 and q_2 are the magnitudes of the charges, and r is the distance between the charges.
The first law of thermo-	$\Delta U = q + w$
dynamics	, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.
Enthalpy H	H = U + PV
Entropy based on Boltz-	$S = k_{B} \ln W$
mann's principle <i>S</i>	, where W is the number of microstates.
The change of entropy	$\Delta S = \frac{q_{rev}}{T}$
ΔS	, where $\dot{q}_{\sf rev}$ is the heat for the reversible process.
Gibbs free energy G	G = H - TS
	$\Delta_{r}G^{\circ} = -RT\ln K = -zFE^{\circ}$
	, where K is the equilibrium constant, z is the number of electrons, E° is
	the standard electrode potential.
Reaction quotient Q	$\Delta_{\rm r}G = \Delta_{\rm r}G^\circ + RT\ln Q$
	For a reaction
	$aA + bB \rightleftharpoons cC + dD$
	$Q = \frac{[C]^{T}[D]^{T}}{T}$
	$\begin{bmatrix} A \end{bmatrix}^a \begin{bmatrix} B \end{bmatrix}^b$
	, where [A] is the concentration of A.

Heat change Δq	$\Delta q = nc_{m}\Delta T$
	, where $c_{\rm m}$ is the temperature-independent molar heat capacity.
Nernst equation for re-	$E=E^\circ+rac{RT}{zF}\lnrac{C_{ m ox}}{C_{ m red}}$
	, where $C_{\rm ox}$ is the concentration of oxidized substance, $C_{\rm red}$ is the concentration of reduced substance.
Arrhenius equation	$k = A \exp\left(-\frac{E_a}{RT}\right)$
	, where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy.
	$\exp(x) = e^x$
Lambert–Beer equation	$A = \varepsilon lc$
	, where A is the absorbance, ε is the molar absorption coefficient, l is the optical path length, c is the concentration of the solution.
Henderson-Hasselbalch	For an equilibrium
equation	$HA \rightleftharpoons H^+ + A^-$
	, where equilibrium constant is K_{a} ,
	$pH = pK_{a} + log\left(\frac{[A^-]}{[HA]}\right)$
Energy of a photon	$E = h\nu = h\frac{c}{\lambda}$
	, where $ u$ is the frequency, λ is the wavelength of the light.
The sum of a geometric	When $x \neq 1$,
series	$1 + x + x^{2} + \dots + x^{n} = \sum_{i=0}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}$
Approximation equation	When $x \ll 1$,
that can be used to solve problems	$\frac{1}{1-x} \simeq 1+x$

BEL-3 C-0 G-6

Periodic Table

18	² Helium 4.003	10 Neon 20.180	18 Ar Argon 39.948	36	Krypton 83.798	S4 Xe	xenon 131.293	°°	Radon [222]	118 Og Oganesson	- 23					
17		9 F Fluorine 18.998	CI CI Chlorine 35.452	35	Bromine 79.904	<u>۔</u> ۳	lodine 126.904	85 At	Astatine [210]	117 TS Tennessine [2031		۲n	Lutetium 174.967	103	٦	Lawrencium [262]
16		8 O Oxygen 15.999	16 Sultur 32.068	34	Selenium 78.971	Te	Tellurium 127.60	Po Po	Polonium [210]	116 LV Livermorium ГЭӨЗТ	[001]	۶ ۲p	Ytterbium 173.045	102	No	Nobelium [259]
15		N Nitrogen 14.007	15 P Phosphorus 30.974	33	AS Arsenic 74.922	s s	Antimony 121.760	Bi 88	Bismuth 208.98	115 Moscovium F2801	[001]	°°	Thulium 168.934	101	Md	Mendelevium [258]
14		6 C Carbon 12.011	14 Silicon 28.085	32	Germanium 72.630	° us	^{тіл} 118.710	Pb	Lead 207.2	114 Fl Flerovium [280]	[202]	°°ц	Erbium 167.259	100	Ш	Fermium [257]
13		5 В Boron 10.814	13 Aluminium 26.982	⁵⁰ (Gallium 69.723	⁴⁹	Indium 114.818	H H	Thallium 204.384	113 Nhonium 10781	6	⁶⁷	Holmium 164.930	66	Еs	Einsteinium [252]
12			1	30 1 30	Zinc 55.38	⁸ O	Cadmium 112.414	°° Hg	Mercury 200.592	112 Copernicium CORFI		°°	Dysprosium 162.500	98	ŭ	Californium [252]
11		active element]		⁵⁰	Cu Copper 63.546	Ag	silver 107.868	Au	Gold 196.967	111 Roentgenium [280]		ده Tb	Terbium 158.925	26	ଇ	Berkelium [247]
10		is for the radio		28 N I:	Nickel 58.693	Pd	Palladium 106.42	Pt Pt	Platinum 195.084	110 DS Darmstadtium [2281]		64 Gd	Gadolinium 157.25	96	С С	curium [247]
6		[in parenthesi		27	Cobalt Cobalt 58.933	⁴⁵ Rh	Rhodium 102.906	۲۲ Ir	Iridium 192.217	109 Meitnerium 10761		е Вu	Europium 151.964	95	Am	Americium [243]
8		atomic number Symbol name atomic weight		7 ²⁶	55.845	Ru Bu	Ruthenium 101.07	0s	^{Osmium} 190.23	108 Hassium 10771	[,,-]	sm [®]	samarium 150.36	94	Pu	Plutonium [239]
7	Key:	113 Nhonium [278]		25 M	NILI Manganese 54.938	⁴³ Tc	Technetium [99]	75 Re	Rhenium 186.207	107 Bh Bohrium [272]	[-, -]	Pm 61	Promethium [145]	93	dN	Neptunium [237]
9				24	Chromium 51.996	Mo ⁴²	Molybdenum 95.95	74 W	Tungsten 183.84	106 Sg Seaborgium	[- ,-]	° P	Neodymium 144.242	92	⊃	Uranium 238.029
5				8	V Vanadium 50.942	⁴¹ Nb	Niobium 92.906	™ Ta	Tantalum 180.948	105 Db Dubnium [768]	[001]	^{ور}	Praseodymium 140.908	91	Ра	Protactinium 231.036
4				5 H	Titanium 47.867	40 Zr	zirconium 91.224	F ²²	Hafnium 178.49	104 Rutherfordium 12671		e s	Cerium 140.116	06	Th	Thorium 232.038
3				5 21	Scandium 44.956	€ ≻	Yttrium 88.906	⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103 Ac-Lr Actinoids		57 La	Lanthanum 138.905	68	Ac	Actinium [227]
2		4 Be Beryllium 9.012	12 Mg Magnesium 24.306	²⁰	Calcium Calcium 40.078	» م ۲	strontium 87.62	Ba Ba	Barium 137.327	88 Radium [226]		⁵⁷⁻⁷¹ La-Lu	Lanthanoids	89-103	Ac-Lr	Actinoids
-	Hydrogen 1.008	³ Lithium 6.968	11 Na sodium 22.990	19	Potassium 39.098	™ Bb	Rubidium 85.468	Cs SS	Caesium 132.905	87 Fr Francium						

¹H NMR Chemical Shifts

BEL-3 C-1 C-1

BEL-3 C-1 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Hydrogène à la surface d'un métal

	11 % du total														
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total								
Barème	6	4	5	3	3	3	24								
Points															

L'hydrogène est envisagé comme future source d'énergie qui ne dépend pas des combustibles fossiles. Nous examinerons ici le processus de stockage de l'hydrogène dans un métal, qui est lié à la technologie de transport et de stockage de l'hydrogène.

Partie A

L'hydrogène étant absorbé à l'intérieur d'un métal via sa surface, considérons d'abord le processus d'adsorption de l'hydrogène à la surface du métal, $H_2(g) \rightarrow 2H(ad)$, où les états gazeux et adsorbé de l'hydrogène sont représentés respectivement par (g) et (ad). Les molécules d'hydrogène (H₂) qui atteignent la surface du métal (M) se dissocient à la surface et sont adsorbées sous forme d'atomes H (Fig. 1). Ici, l'énergie potentielle de H₂ est représentée par deux variables : la distance interatomique *d*, et la hauteur par rapport à l'atome métallique de surface *z*. On suppose que l'axe joignant les deux atomes H est parallèle à la surface et que le centre de gravité de l'ensemble des deux atomes se trouve toujours sur la ligne pointillée verticale de la Fig. 1. La Fig. 2 représente la carte des niveaux d'énergie potentielle pour la dissociation à la surface. Les valeurs numériques représentent l'énergie potentielle en kJ par mole de H₂. L'espacement entre les lignes pleines est de 20 kJ mol⁻¹, l'espacement entre les lignes pointillées est de 100 kJ mol⁻¹, et l'espacement entre les lignes pleines et pointillées est de 80 kJ mol⁻¹. On néglige l'énergie de vibration de point zéro.

BEL-3 C-1 Q-2

Fig.1 Définition des variables. Le schéma n'est pas à l'échelle.

A.1 Pour chacun des items suivants (i)–(iii), <u>choisir</u> la valeur la plus proche parmi les 6pt propositions A–G.
(i) La distance interatomique pour une molécule de H₂ gazeuse
(ii) La distance interatomique entre les atomes de métal (d_M dans la Fig. 1)
(iii) La distance entre la surface et les atomes H adsorbés (h_{ad} dans la Fig. 1)

A. 0,03 nm B. 0,07 nm C. 0,11 nm D. 0,15 nm E. 0,19 nm F. 0,23 nm G. 0,27 nm

A.2 Pour chacune des grandeurs suivantes (i)–(ii), choisir la valeur la plus proche 4pt parmi les propositions A-H. (i) l'énergie requise pour la dissociation de H₂ gazeux en H gazeux. $[H_2(g) \rightarrow 2H(g)]$ (ii) l'énergie libérée lors de l'adsorption d'une molécule gazeuse de H₂ [H₂(g) \rightarrow 2H(ad)] A. 20 kJ mol⁻¹ B. 40 kJ mol $^{-1}$ C. 60 kJ mol $^{-1}$ D. 100 kJ mol⁻¹ E. 150 kJ mol⁻¹ F. 200 kJ mol⁻¹ G. 300 kJ mol⁻¹ H. 400 kJ mol⁻¹

BEL-3 C-1 Q-4

Partie B

Les atomes d'hydrogène adsorbés sont alors soit absorbés à l'intérieur du métal, soit recombinés et désorbés dans la phase gazeuse, comme le montrent les réactions (1a) et (1b). H(ab) représente un atome d'hydrogène absorbé dans le métal.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

Les vitesses de réaction par site de surface pour l'adsorption, la désorption et l'absorption sont respectivement $r_1[s^{-1}], r_2[s^{-1}]$ et $r_3[s^{-1}]$. Elles sont exprimées comme suit :

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

où k_1 [s⁻¹ Pa⁻¹], k_2 [s⁻¹] et k_3 [s⁻¹] sont les constantes de vitesse de réaction et P_{H_2} est la pression en H₂. Parmi les sites disponibles à la surface, θ ($0 \le \theta \le 1$) est la fraction occupée par des atomes H. On suppose que l'adsorption et la désorption sont rapides par rapport à l'absorption ($r_1, r_2 \gg r_3$), et que θ reste constant.

B.1 r_3 peut être exprimé comme suit : 5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5) <u>Déterminer</u> l'expression de C en fonction de k_1 et k_2 .

Un échantillon métallique d'une surface de $S = 1, 0 \times 10^{-3} \text{ m}^2$ a été placé dans un contenant (1L = $1, 0 \times 10^{-3} \text{ m}^3$) sous H₂ ($P_{\text{H}_2} = 1, 0 \times 10^2 \text{ Pa}$).

La densité surfacique des sites d'adsorption d'atomes d'hydrogène vaut $N = 1, 3 \times 10^{18} \text{ m}^{-2}$. La température de surface est maintenue à T = 400 K. Au cours de la réaction (1), P_{H_2} diminue à une vitesse constante de $v = 4, 0 \times 10^{-4} \text{ Pa s}^{-1}$. On suppose que H₂ est un gaz parfait et que le volume de l'échantillon métallique est négligeable.

- **B.2** <u>**Calculer**</u> la quantité en moles d'atomes H absorbés par unité de surface et par 3pt unité de temps, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** À T = 400 K, C vaut $1, 0 \times 10^2$ Pa⁻¹. <u>Calculer</u> la valeur de k_3 à 400 K. Si vous n'avez 3pt pas répondu à la question **B.2**, utilisez $A = 3, 6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** À une température *T* différente, on donne $C = 2,5 \times 10^3 \text{ Pa}^{-1}$ et $k_3 = 4,8 \times 3pt$ 10^{-2} s^{-1} . Pour la représentation de r_3 en fonction de P_{H_2} à cette température, <u>sélectionner</u> la courbe correcte parmi les propositions (a)–(h).

Hydrogen at a Metal Surface

11 % of the total														
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total							
Points	6	4	5	3	3	3	24							
Score														

BEL-3 C-1 Q-1

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in a metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $H_2(g) \rightarrow 2H(ad)$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules (H_2) that reach the metal surface (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_2 is represented by two variables: the interatomic distance, d, and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy in units of kJ per mole of H_2 . The solid line spacing is 20 kJ mol⁻¹, the dashed line spacing is 100 kJ mol⁻¹, and the spacing between solid and dashed lines is 80 kJ mol⁻¹. The zero-point vibration energy is ignored.

6pt

A.1 For each of the following items (i)–(iii), <u>select</u> the closest value from A–G. (i) The interatomic distance for a gaseous H₂ molecule (ii) The interatomic distance between metal atoms (d_M in Fig. 1) (iii) The distance of adsorbed H atoms from the surface (h_{ad} in Fig. 1)

A. 0.03 nmB. 0.07 nmC. 0.11 nmD. 0.15 nmE. 0.19 nmF. 0.23 nmG. 0.27 nm

BEL-3 C-1 Q-3

A.2For each of the following items (i)–(ii), select the closest value from A–H.4pt(i) the energy required for the dissociation of gaseous H2 to gaseous H4pt $[H_2(g) \rightarrow 2H(g)]$ (ii) the energy released during the adsorption of a gaseous H2 [H2(g) $\rightarrow 2H(ad)$]4ptA. 20 kJ mol⁻¹B. 40 kJ mol⁻¹C. 60 kJ mol⁻¹D. 100 kJ mol⁻¹E. 150 kJ mol⁻¹F. 200 kJ mol⁻¹G. 300 kJ mol⁻¹H. 400 kJ mol⁻¹

BEL-3 C-1 Q-4

Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). H(ab) represents a hydrogen atom absorbed in the bulk.

$$H_2(g) \stackrel{k_1}{\underset{k_2}{\longrightarrow}} 2H(ad)$$
(1a)

$$H(ad) \xrightarrow{k_3} H(ab)$$
(1b)

The reaction rates per surface site for adsorption, desorption, and absorption are $r_1[s^{-1}], r_2[s^{-1}]$ and $r_3[s^{-1}]$, respectively. They are expressed as:

$$r_1 = k_1 P_{\mathsf{H}_2} (1 - \theta)^2 \tag{2}$$

$$r_2 = k_2 \theta^2 \tag{3}$$

$$r_3 = k_3 \theta \tag{4}$$

where $k_1 [s^{-1} Pa^{-1}]$, $k_2 [s^{-1}]$ and $k_3 [s^{-1}]$ are the reaction rate constants and P_{H_2} is the pressure of H_2 . Among the sites available on the surface, θ ($0 \le \theta \le 1$) is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_1, r_2 \gg r_3$) and that θ remains constant.

B.1
$$r_3$$
 can be expressed as:5pt $r_3 = \frac{k_3}{1 + \sqrt{\frac{1}{P_{H_2}C}}}$ (5)**Express** C using k_1 and k_2 .

A metal sample with a surface area of $S = 1.0 \times 10^{-3} \text{ m}^2$ was placed in a container (1L = $1.0 \times 10^{-3} \text{ m}^3$) with H₂ ($P_{\text{H}_2} = 1.0 \times 10^2 \text{ Pa}$). The density of hydrogen-atom adsorption sites on the surface was $N = 1.3 \times 10^{18} \text{ m}^{-2}$. The surface temperature was kept at T = 400 K. As the reaction (1) proceeded, P_{H_2} decreased at a constant rate of $v = 4.0 \times 10^{-4} \text{ Pa s}^{-1}$. Assume that H₂ is an ideal gas and that the volume of the metal sample is negligible.

- **B.2** Calculate the amount of H atoms in moles absorbed per unit area of the surface 3pt per unit time, $A \text{ [mol s}^{-1} \text{ m}^{-2} \text{]}$.
- **B.3** At T = 400 K, C equals 1.0×10^2 Pa⁻¹. <u>Calculate</u> the value of k_3 at 400 K. If you 3pt did not obtain the answer to **B.2**, use $A = 3.6 \times 10^{-7}$ mol s⁻¹ m⁻².
- **B.4** At a different T, $C = 2.5 \times 10^3 \text{ Pa}^{-1}$ and $k_3 = 4.8 \times 10^{-2} \text{ s}^{-1}$ are given. For r_3 as a 3pt function of P_{H_2} at this temperature, **select** the correct plot from (a)–(h).

Hydrogène à la surface d'un métal

Partie A

Partie B

B.1 (5 pt)

 $\underline{A} =$

C = _______

BEL-3 C-1 A-2

mol s⁻¹ m⁻²

B.3 (3 pt)		
<u>$k_3 =$</u>	<u> </u>	
B.4 (3 pt)		

BEL-3 C-1 A-3

BEL-3 C-2 C-1

BEL-3 C-2 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Capsule temporelle d'isotopes

11 % du total					
Question	A.1	A.2	A.3	A.4	Total
Barème	8	8	10	9	35
Points					

Les entités moléculaires qui ne diffèrent que par leur composition isotopique, comme CH₄et CH₃D, sont appelées isotopologues. On considère que les isotopologues ont les mêmes caractéristiques chimiques. Dans la nature, cependant, il existe une légère différence.

Toutes les substances présentées dans ce Problème sont supposées en phase gazeuse.

On considère l'équilibre suivant :

L'entropie, S , augmente avec le nombre d'états microscopiques possibles d'un système, W :

$$S = k_{\mathsf{B}} \ln W \tag{2}$$

W = 1 pour ${}^{12}C^{16}O_2$ et ${}^{12}C^{18}O_2$. En revanche, W = 2 pour une molécule de ${}^{12}C^{16}O^{18}O$ car les atomes d'oxygène sont différents dans cette molécule. Comme le membre de droite de l'équilibre représenté dans l'éq. 1 comporte deux molécules de ${}^{12}C^{16}O^{18}O$, on a : $W = 2^2 = 4$.

A.1 L'enthalpie de réaction, $\Delta_r H$, de l'éq. 3 est positive quelle que soit la tempéra-8pt ture.

$$H_2 + DI \rightleftharpoons HD + HI$$
 (3)

<u>**Calculer**</u> les constantes d'équilibre, K, pour l'éq. 3 à très basse température (c'est à dire quand $T \rightarrow 0$) et à très haute température (c'est à dire quand $T \rightarrow +\infty$). On suppose que la réaction reste inchangée à ces températures et que $\Delta_r H$ tend vers une valeur constante à haute température.

Le $\Delta_r H$ du processus suivant peut être expliqué par les vibrations moléculaires.

$$2HD \rightleftharpoons H_2 + D_2$$
 $K = \frac{[H_2][D_2]}{[HD]^2}$ (4)

À T= 0 K, l'énergie vibrationnelle d'une molécule diatomique dont la fréquence de vibration est ν [s⁻¹] s'exprime :

$$E = \frac{1}{2}h\nu$$
(5)

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Où k est la constante de force et μ la masse réduite, qui s'exprime en fonction de la masse des deux atomes de la molécule diatomique, m_1 et m_2 , selon :

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 Le nombre d'onde associé à la vibration de H₂ vaut 4161,0 cm⁻¹. <u>Calculer</u> $\Delta_r H$ 8pt pour l'équation suivante à T = 0 K en J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

On considère que :

- seule l'énergie vibrationnelle contribue à $\Delta_r H.$
- les valeurs de k pour H₂, HD, et D₂ sont identiques.
- la masse de H vaut 1 Da et la masse de D vaut 2 Da.

La fraction molaire de H₂, HD et D₂ dépend de la température dans un système en équilibre. Ici, Δ_{D_2} est défini à partir de la variation de la fraction molaire de D₂.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Ici, R_{D_2} représente $\frac{[D_2]}{[H_2]}$ dans l'échantillon et $R_{D_2}^*$ représente $\frac{[D_2]}{[H_2]}$ quand $T \to +\infty$. À noter : la distribution des isotopes devient aléatoire quand $T \to +\infty$.

A.3 À l'aide de l'abondance naturelle de D, <u>calculer</u> Δ_{D_2} lorsque l'échange isotopique est à l'équilibre à la température à laquelle K de l'éq. 4 vaut 0,300. On suppose que les abondances naturelles de D et de H valent respectivement $1,5576 \times 10^{-4}$ et $1 - 1,5576 \times 10^{-4}$.

BEL-3 C-2 Q-4

En général, la fraction molaire de l'isotopologue doublement substitué, qui contient deux atomes d'isotopes lourds par molécule, augmente quand la température diminue. On considère la fraction molaire des molécules de CO₂ de masse moléculaire 44 et 47, notées CO₂[44] et CO₂[47] ci-dessous. La grandeur Δ_{47} est définie comme :

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} représente $\frac{[CO_2[47]]}{[CO_2[44]]}$ dans l'échantillon et R_{47}^* représente $\frac{[CO_2[47]]}{[CO_2[44]]}$ quand $T \to +\infty$. Les abondances naturelles des atomes de carbone et d'oxygène sont indiquées ci-dessous; on ne considèrera que les isotopes cités ici.

	¹² C	¹³ C
abondance naturelle	0,988888	0,011112

	¹⁶ O	¹⁷ O	¹⁸ O
abondance naturelle	0,997621	0,0003790	0,0020000

 Δ_{47} dépend de la température selon la relation ci-dessous, où T est la température absolue en K :

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 Le R_{47} de plancton fossile prélevé dans les fonds marins de l'Antarctique vaut de 9pt $4,50865 \times 10^{-5}$. **Déterminer** la température à l'aide de cette valeur de R_{47} . Cette température peut-être interprétée comme la température de l'air à l'époque où le plancton vivait. On ne considèrera que l'isotopologue le plus abondant $CO_2[47]$ pour ce calcul.

Isotope Time Capsule

11 % of the total					
Question	A.1	A.2	A.3	A.4	Total
Points	8	8	10	9	35
Score					

Molecular entities that differ only in isotopic composition, such as CH_4 and CH_3D , are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.

Assume that all of the substances shown in this Question are in a gas phase.

Let us consider the following equilibrium:

The entropy, *S*, increases with increasing the number of possible microscopic states of a system, *W*:

$$S = k_{\rm B} \ln W \tag{2}$$

W = 1 for ${}^{12}C^{16}O_2$ and ${}^{12}C^{18}O_2$. In contrast, W = 2 for a ${}^{12}C^{16}O^{18}O$ molecule because the oxygen atoms are distinguishable in this molecule. As the right-hand side of the equilibrium shown in eq. 1 has two ${}^{12}C^{16}O^{18}O$ molecules, $W = 2^2 = 4$.

A.1 The enthalpy change,
$$\Delta H$$
, of eq. 3 is positive regardless of the temperature. 8pt
 $H_2 + DI \rightleftharpoons HD + HI$ (3)
Calculate the equilibrium constants, *K*, for eq. 3 at very low (think of $T \rightarrow 0$) and
very high (think of $T \rightarrow +\infty$) temperatures. Assume that the reaction remains
unchanged at these temperatures and that ΔH converges to a constant value

The ΔH of the following process can be explained by molecular vibrations.

for high temperatures.

$$2\mathsf{H}\mathsf{D} \rightleftharpoons \mathsf{H}_2 + \mathsf{D}_2 \qquad \qquad K = \frac{[\mathsf{H}_2][\mathsf{D}_2]}{[\mathsf{H}\mathsf{D}]^2} \tag{4}$$

At T = 0 K, the vibrational energy of a diatomic molecule whose vibration frequency is $\nu [s^{-1}]$ is expressed as:

$$E = \frac{1}{2}h\nu\tag{5}$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{6}$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_1 and m_2 , according to:

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \tag{7}$$

A.2 The vibration of H_2 is at 4161.0 cm⁻¹ when reported as a wavenumber. 8pt <u>**Calculate**</u> the ΔH of the following equation at T = 0 K in units of J mol⁻¹.

$$2HD \rightarrow H_2 + D_2 \tag{8}$$

Assume that:

- only the vibrational energy contributes to the ΔH .
- the k values for H₂, HD, and D₂ are identical.
- the mass of H to be 1 Da and the mass of D to be 2 Da.

The molar ratio of H₂, HD, and D₂ depends on the temperature in a system in equilibrium. Here, Δ_{D_2} is defined as the change of the molar ratio of D₂.

$$\Delta_{\mathsf{D}_2} = \frac{R_{\mathsf{D}_2}}{R_{\mathsf{D}_2}^*} - 1 \tag{9}$$

Here, R_{D_2} refers to $\frac{[D_2]}{[H_2]}$ in the sample and $R_{D_2}^*$ to $\frac{[D_2]}{[H_2]}$ at $T \to +\infty$. It should be noted here that the distribution of isotopes becomes random at $T \to +\infty$.

A.3 <u>**Calculate**</u> Δ_{D_2} with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 4 is 0.300. Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1 - 1.5576 \times 10^{-4}$, respectively.

BEL-3 C-2 Q-4

In general, the molar ratio of the doubly substituted isotopologue, which contains two heavy isotope atoms in one molecule, increases with decreasing temperature. Let us consider the molar ratio of CO₂ molecules with molecular weights of 44 and 47, which are described as CO₂[44] and CO₂[47] below. The quantity Δ_{47} is defined as:

$$\Delta_{47} = \frac{R_{47}}{R_{47}^*} - 1 \tag{10}$$

 R_{47} refers to $\frac{[CO_2[47]]}{[CO_2[44]]}$ in the sample and R_{47}^* to $\frac{[CO_2[47]]}{[CO_2[44]]}$ at $T \to +\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

	¹² C	¹³ C
natural abundance	0.988888	0.011112

	¹⁶ O	¹⁷ O	¹⁸ O
natural abundance	0.997621	0.0003790	0.0020000

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K:

$$\Delta_{47} = \frac{36.2}{T^2} + 2.920 \times 10^{-4} \tag{11}$$

A.4 The
$$R_{47}$$
 of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5} . 9pt **Estimate** the temperature using this R_{47} . This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of $CO_2[47]$ for the calculation.

A2-1 French Belgium (Belgium)

Capsule temporelle d'isotopes

BEL-3 C-2 A-1

A.1 (8 pt)

 $\frac{T \to 0: K =}{T \to +\infty: K} =$

A.2 (8 pt)	
$\Delta rH =$	J mol ⁻¹

A.3 (10 pt) $\Delta_{\rm D_2} =$

A.4 (9 pt)
T = K
<u>Т = К</u>

BEL-3 C-3 C-1

BEL-3 C-3 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

BEL-3 C-3 Q-1

Loi de Beer-Lambert

	8 %	du total		
Question	A.1	B.1	B.2	Total
Barème	10	6	6	22
Points				

Dans ce problème,on néglige l'absorption de la cellule et du solvant. Les températures de toutes les solutions et de tous les gaz sont maintenues constantes à 25 °C.

Partie A

On prépare une solution aqueuse **X** à partir de HA et NaA. Les concentrations [A⁻], [HA] et [H⁺] dans la solution **X** sont respectivement : 1.00×10^{-2} mol L⁻¹; 1.00×10^{-3} mol L⁻¹ et 1.00×10^{-4} mol L⁻¹. Elles sont reliées par l'équilibre acide-base suivant :

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

Dans la partie A, la longueur du chemin optique est *l* . On considère la masse volumique constante au cours de la dilution. On suppose qu'aucune autre réaction chimique que l'éq. 1 ne se produit.

A.1 La solution **X** possède une absorance A_1 à la longueur d'onde λ_1 . Ensuite, la solution **X** est diluée au double de son volume initial à l'aide d'acide chlorhydrique de pH = 2,500. Après la dilution, l'absorbance est toujours A_1 à λ_1 . **Déterminer** le rapport $\varepsilon_{HA}/\varepsilon_{A^-}$, où ε_{HA} et ε_{A^-} représentent respectivement les coefficients d'extinction molaire de HA et de A⁻.

BEL-3 C-3 Q-2

Part B

Considérons l'équilibre suivant en phase gazeuse :

$$D \rightleftharpoons 2M$$
 (2)

Un gaz pur **D** est introduit à une pression *P* dans un récipient parallélépipédique possèdant une paroi mobile transparente de section transversale *S* (voir la figure ci-dessous). L'équilibre s'établit à la pression totale *P* constante. L'absorbance du gaz est $A = \varepsilon (n/V)l$, où ε , *n*, V et *l* sont respectivement le coefficient d'extinction molaire, la quantité de gaz en moles, le volume du gaz et la longueur du chemin optique. On considère que tous les composants du mélange gazeux se comportent comme des gaz parfaits.

Utiliser les définitions suivantes si nécessaire :

	Etat i	initial	A l'équ	uilibre
	D	M	D	М
Pression partielle	Р	0	p_{D}	p_{M}
quantité de matière (mol)	n_0	0	n_{D}	n_{M}
Volume	V	0	V	7

- **B.1** L'absorbance du gaz à λ_{B1} mesuré dans la direction x ($l = l_x$) vaut A_{B1} à la fois à 6pt l'état initial et une fois l'équilibre atteint. Determiner le rapport $\varepsilon_D / \varepsilon_M$ à λ_{B1} ,où ε_D et ε_M représentent respectivement les coefficients d'extinction molaire de D et de M.
- **B.2** L'absorbance du gaz à λ_{B2} mesuré dans la direction y vaut A_{B2} à la fois à l'état 6pt initial et une fois l'équilibre atteint. **Determiner** le rapport $\varepsilon_D / \varepsilon_M$ à λ_{B2} .

Lambert-Beer Law?

	8 % o	f the tot	al	
Question	A.1	B.1	B.2	Total
Points	10	6	6	22
Score				

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at 25 °C.

Part A

An aqueous solution **X** was prepared using HA and NaA. The concentrations [A⁻], [HA], and [H⁺] in solution **X** are 1.00×10^{-2} mol L⁻¹, 1.00×10^{-3} mol L⁻¹, and 1.00×10^{-4} mol L⁻¹, respectively, which are correlated via the following acid-base equilibrium:

$$\mathsf{HA} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+ \qquad \qquad K = \frac{[\mathsf{A}^-][\mathsf{H}^+]}{[\mathsf{HA}]} \tag{1}$$

The optical path length is *l* in Part A. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.

A.1 The absorbance of **X** was A_1 at a wavelength of λ_1 . Then, solution **X** was diluted 10pt to twice its initial volume using hydrochloric acid with pH = 2.500. After the dilution, the absorbance was still A_1 at λ_1 . **Determine** the ratio $\varepsilon_{HA}/\varepsilon_{A^-}$, where ε_{HA} and ε_{A^-} represent the absorption coefficients of HA and of A⁻, respectively, at λ_1 .

BEL-3 C-3 Q-2

Part B

Let us consider the following equilibrium in the gas phase.

$$D \rightleftharpoons 2M$$
 (2)

Pure gas D is filled into a cuboid container that has a transparent movable wall with a cross-section of S (see the figure below) at a pressure P, and equilibrium is established while the total pressure is kept at P. The absorbance of the gas is $A = \varepsilon(n/V)l$, where ε , n, V, and l are the absorption coefficient, amount of the gas in moles, volume of the gas, and optical path length, respectively. Assume that all components of the gas mixture behave as ideal gases.

Use the following definitions if necessary.

	Initia	state	After equ	uilibrium
	D	М	D	М
Partial pressure	Р	0	p_{D}	p_{M}
Amount in moles	n_0	0	n _D	n_{M}
Volume	V	7 0	I	7

- **B.1** The absorbance of the gas at λ_{B1} measured from direction x ($l = l_x$) was A_{B1} 6pt both at the initial state and after the equilibrium. Determine the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B1} , where ε_D and ε_M represent the absorption coefficients of D and of M, respectively.
- **B.2** The absorbance of the gas at λ_{B2} measured from direction y was A_{B2} both at the initial state ($l = l_{y0}$) and after the equilibrium ($l = l_y$). **Determine** the ratio $\varepsilon_D / \varepsilon_M$ at λ_{B2} .

A3-1 French Belgium (Belgium)

BEL-3 C-3 A-1

Loi de Beer-Lambert

Partie A

A.1 (10 pt)

(suite page suivante)

A.1 (cont.)

BEL-3 C-3 A-2

 $\varepsilon_{\rm HA}/\varepsilon_{\rm A^-} =$

Partie B

B.1 (6 pt)

 $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

B.2 (6 pt) $\varepsilon_{\rm D}/\varepsilon_{\rm M} =$

BEL-3 C-3 A-4

BEL-3 C-4 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

L'oxydo-réduction du zinc

			11 % du	total			
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total
Barème	6	5	4	3	5	9	32
Points							

Le zinc est utilisé depuis longtemps dans des alliages tels que le laiton et l'acier. Le zinc contenu dans les effluents industriels sont extraits par précipitation pour purifier l'eau. Les précipités obtenus sont ensuite réduits pour récupérer et réutiliser le zinc métallique.

Partie A

L'équilibre de dissolution de l'hydroxyde de zinc $Zn(OH)_2(s)$ à 25 °C et les constantes d'équilibres correspondantes sont fournies dans les eq. 1-4.

$$Zn(OH)_2(s) \rightleftharpoons Zn^{2+}(aq) + 2OH^{-}(aq) \qquad K_{sp} = 1.74 \times 10^{-17}$$
(1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq)$$
 $K_2 = 6.47 \times 10^{-2}$ (3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

L'expression de la solubilité du zinc, *S* (c'est-à-dire la concentration du zinc dans une solution aqueuse saturée) est présentée en eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.2** On prépare une solution saturée de $Zn(OH)_2(s)$ à pH = 7,00 puis on la filtre. 5pt On ajoute NaOH au filtrat pour ajuster le pH à 12,00. <u>Calculer</u> le pourcentage molaire du zinc qui précipite lors de l'augmentation du pH de 7,00 à 12,00. On néglige les variations de volume et de température.

Partie B

L'hydroxyde de zinc ainsi récupéré est ensuite chauffé pour obtenir de l'oxyde de zinc selon l'équation :

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

Ensuite, l'oxyde de zinc est réduit par réaction avec le dihydrogène :

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1 Pour que la réaction (7) soit favorable sous une pression en dihydrogène maintenue constante à 1 bar, il est nécessaire de de diminuer la pression partielle en eau formée. **Calculer** la valeur maximale que peut atteindre la pression partielle en eau pour que la réaction (7) demeure favorable à 300 °C. Les enthalpies libres de formation de l'oxyde de zinc et de l'eau gazeuse à 300°C et sous 1 bar sont respectivement : $\Delta_r G_{ZnO}(300°C) = -2.90 \times 10^2 \text{ kJ mol}^{-1} \Delta_r G_{H_2O}(300°C) =$ $-2.20 \times 10^2 \text{ kJ mol}^{-1}$

Le zinc métallique est utilisé comme électrode négative (anode) pour les batteries métal-air. L'électrode est composée de Zn et de ZnO. Ces batteries génèrent de l'électricité grâce à la réaction d'oxydo-réduction suivante caractérisée par la force électromotrice (f.e.m.) *E*°, donnée à 25 °C et sous 1 bar.

$$\operatorname{Zn}(s) + \frac{1}{2}O_2(g) \to \operatorname{ZnO}(s)$$
 $E^\circ = 1.65 \,\mathrm{V}$ (8)

B.2 Une batterie zinc-air est déchargée à 20 mA pendant 24 heures. <u>Calculer</u> la 3pt variation de masse de l'électrode négative (anode) de cette batterie.

Mont Fuji

B.3 On s'intéresse à la variation de la f.e.m. d'une batterie zinc-air avec l'environ- 5pt nement. <u>Calculer</u> la f.e.m. au sommet du Mont Fuji pour une température de -38 °C et à une altitude de 3776 m. La pression atmosphérique peut être calculée à l'aide de l'équation :

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

où h est l'altitude en [m] et T la température en [°C]. La fraction molaire de dioxygène dans l'atmosphère est de 21 %. L'enthalpie libre de la réaction (8) est : $\Delta_{\rm r}G_{\rm ZnO}(-38^{\circ}{\rm C}) = -3.26 \times 10^2 \,{\rm kJ}\,{\rm mol}^{-1}$ à $-38^{\circ}{\rm C}$ et sous 1 bar.

B.4 <u>**Calculer**</u> l'enthalpie libre de la réaction (6) à 25 °C. Les valeurs des potentiels 9pt standard $E^{\circ}(Zn^{2+}/Zn)$ et $E^{\circ}(O_2/H_2O)$ associés respectivement aux équations (10) et (11), sous 1 bar, sont données ci-dessous.

$$Zn^{2+} + 2e^- \rightarrow Zn$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

The Redox Chemistry of Zinc

		11	l % of th	e total			
Question	A.1	A.2	B.1	B.2	B.3	B.4	Total
Points	6	5	4	3	5	9	32
Score							

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $Zn(OH)_2(s)$ at 25 °C and the relevant equilibrium constants are given in eq. 1–4.

$$\operatorname{Zn}(\operatorname{OH})_2(\mathbf{s}) \rightleftharpoons \operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \qquad K_{\operatorname{sp}} = 1.74 \times 10^{-17}$$
 (1)

$$\operatorname{Zn}(\operatorname{OH})_2(s) \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2(\operatorname{aq})$$
 $K_1 = 2.62 \times 10^{-6}$ (2)

$$Zn(OH)_2(s) + 2OH^-(aq) \rightleftharpoons Zn(OH)_4^{2-}(aq) \qquad K_2 = 6.47 \times 10^{-2}$$
(3)

$$H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq) \qquad K_w = 1.00 \times 10^{-14}$$
(4)

The solubility, *S*, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5.

$$S = [Zn^{2+}(aq)] + [Zn(OH)_2(aq)] + [Zn(OH)_4^{2-}(aq)]$$
(5)

- **A.1** When the equilibria in eq. 1–4 are established, <u>calculate</u> the pH range 6pt in which $[Zn(OH)_2(aq)]$ is the greatest among $[Zn^{2+}(aq)]$, $[Zn(OH)_2(aq)]$ and $[Zn(OH)_4^{2-}(aq)]$.
- **A.2** A saturated aqueous solution of $Zn(OH)_2(s)$ with pH = 7.00 was prepared and 5pt filtered. NaOH was added to this filtrate to increase its pH to 12.00. <u>Calculate</u> the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00. Ignore the volume and temperature changes.

Part B

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:

$$Zn(OH)_2(s) \rightarrow ZnO(s) + H_2O(I)$$
(6)

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:

$$ZnO(s) + H_2(g) \rightarrow Zn(s) + H_2O(g)$$
(7)

B.1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. <u>Calculate</u> the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at 300 °C. Here, the Gibbs formation energies of zinc oxide and water vapor at 300 °C and 1 bar for all gaseous species are $\Delta G_{ZnO}(300^{\circ}C) =$ -2.90×10^{2} kJ mol⁻¹ and $\Delta G_{H_{2}O}(300^{\circ}C) = -2.20 \times 10^{2}$ kJ mol⁻¹, respectively.

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO. It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at 25 °C and pressure of 1 bar, E° .

$$\operatorname{Zn}(\mathbf{s}) + \frac{1}{2}\operatorname{O}_{2}(\mathbf{g}) \to \operatorname{ZnO}(\mathbf{s})$$
 $E^{\circ} = 1.65 \,\mathrm{V}$ (8)

B.2 A zinc–air battery was discharged at 20 mA for 24 hours. <u>Calculate</u> the change 3pt in mass of the negative electrode (anode) of the battery.

Mt. Fuji

B.3 Consider the change of e.m.f. of a zinc–air battery depending on the environ- 5pt ment. <u>Calculate</u> the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are -38 °C (February) and 3776 m, respectively. The atmospheric pressure is represented by

$$P\left[\mathsf{bar}\right] = 1.013 \times \left(1 - \frac{0.0065h}{T + 0.0065h + 273.15}\right)^{5.257} \tag{9}$$

at altitude h [m] and temperature T [°C]. The molar ratio of oxygen in the atmosphere is 21%. The Gibbs energy change of reaction (8) is $\Delta G_{ZnO}(-38^{\circ}C) = -3.26 \times 10^2 \text{ kJ mol}^{-1}$ at $-38^{\circ}C$ and 1 bar.

B.4 <u>**Calculate**</u> the Gibbs energy change for reaction (6) at $25 \degree$ C. Note that the standard reduction potentials, $E^{\circ}(Zn^{2+}/Zn)$ and $E^{\circ}(O_2/H_2O)$ at $25 \degree$ C and 1 bar are given as (10) and (11), respectively.

 $Zn^{2+} + 2e^- \rightarrow Zn$ $E^{\circ}(Zn^{2+}/Zn) = -0.77 V$ (10)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^{\circ}(O_2/H_2O) = 1.23V$ (11)

L'oxydo-réduction du zinc

BEL-3 C-4 A-1

Partie A

A.1 (6 pt)

< pH <

A.2 (5 pt)	
%	

Part B

D.1 (4 pt)	
$p_{H_{2}O_{-}}$	bar
B.2 (3 pt)	

B.3 (5 pt)	
V	

B.4 (9 pt)

 $\Delta G^{\circ} = \qquad \qquad {\rm J}\,{\rm mol}^{-1}$

BEL-3 C-5 C-1

BEL-3 C-5 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Ce mystérieux silicium

12 % du total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Barème	9	7	6	10	5	15	8	60
Points								

Bien que le silicium soit également un élément du groupe 14 comme le carbone, leurs propriétés diffèrent considérablement.

Partie A

Contrairement à la triple liaison carbone-carbone, la triple liaison silicium-silicium dans un composé formulé comme R^1 –Si \equiv Si– R^1 (R : substituant organique) est extrêmement réactive. Par exemple, elle réagit avec l'éthylène pour former un produit cyclique à quatre atomes.

Lorsque $R^1-Si \equiv Si-R^1$ réagit avec un alcyne ($R^2-C \equiv C-R^2$), le cycle à quatre atomes **A** est obtenu comme intermédiaire initial. Une réaction supplémentaire d'une autre molécule de $R^2-C \equiv C-R^2$ avec **A** donne les isomères **B** et **C**, qui ont tous deux des structures conjuguées cycliques de type benzène, appelées "disilabenzènes", qui contiennent un cycle à six atomes et peuvent être formulés sous la forme ($R^1-Si_2(R^2-C)_4$.

BEL-3 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

Les données de l'analyse par RMN ¹³C correspondant au squelette cyclique à six atomes Si_2C_4 montrent deux signaux pour **B** et un signal pour **C**.

- **A.1 Dessiner** une structure possible pour chacune des molécules **A**, **B** et **C** en utili- 9pt sant R¹, R², Si et C.
- **A.2** <u>**Calculer**</u> l'énergie de stabilisation aromatique (ESA) pour le benzène et pour le 7pt composé **C** (dans le cas où $R^1 = R^2 = H$) comptée positivement, en utilisant les enthalpies de réaction de quelques réactions d'hydrogénation de systèmes insaturés fournies ci-dessous (notées ΔH , fig.1).

Fig. 1

Lorsqu'on chauffe une solution du composé **C** dans le xylène, il se produit une réaction d'isomérisation qui conduit à l'équilibre à un mélange des composés **D** et **E**. Le rapport molaire est D/E = 1/40,0 à 50,0 °C et **D**/E = 1/20,0 à 120,0 °C.

A.3 <u>**Calculer**</u> le ΔH pour la transformation de **D** en **E**. On considère que le ΔH ne 6pt dépend pas de la température.

L'isomérisation de **C** en **D** et en **E** met en jeu la transformation des liaisons π en liaisons σ sans rupture des liaisons σ . Une analyse RMN ¹³C révèle un signal pour le squelette Si₂C₄ de **D** et deux signaux pour celui de **E**. Le squelette de **D** ne contient pas de cycles à trois atomes, tandis que **E** a deux cycles à trois atomes qui partagent un côté.

A.4 <u>Dessiner</u> les structures de **D** et **E** en utilisant R^1 , R^2 , Si et C. 10pt

Partie B

Le silicium est capable de former des composés hautement coordonnés (> quatre substituants) avec des éléments électronégatifs tels que le fluor. Tout comme les fluorures liés à un métal sont souvent utilisés comme réactifs de fluoration, les fluorures de silicium hautement coordonnés servent également de réactifs de fluoration. La réaction de fluoration de CCl_4 à l'aide de Na_2SiF_6 a été réalisée comme suit.

• Préparation d'une solution étalon de Na₂SiF₆ :

· Préparation

Solution aqueuse **F** : 0.855 g de Na₂SiF₆ (188.053 g mol⁻¹) dissous dans de l'eau (volume totale : 200 mL).

Solution aqueuse ${\bf G}$: 6.86 g of $Ce_2(SO_4)_3$ (568.424 $\,$ g mol^{-1}) dissous dans de l'eau (volume totale : 200 mL).

· Mode opératoire

Titrage par précipitation de la solution **F** (50,0 mL) en ajoutant goutte à goutte la solution **G** en présence de l'indicateur xylénol orange, qui se coordonne aux ions Ce^{3+} . Après avoir ajouté 18,8 mL de la solution **G**, la couleur de la solution change du jaune au magenta. Le précipité généré est un composé binaire qui contient Ce^{3+} , et le seul composé silylé obtenu est Si(OH)₄.

B.1 <u>Écrire</u> l'équation équilibrée de la réaction de Na_2SiF_6 avec $Ce_2(SO_4)_3$. 5pt

• Réaction de CCl₄avec Na₂SiF₆ :

(Les pertes de substances, par exemple par évaporation, sont négligeables au cours des opérations suivantes.)

 $Na_2SiF_6(x [g])$ est introduit dans $CCl_4(500,0 g)$ et chauffé à 300°C dans un récipient étanche résistant à la pression. L'excès de Na_2SiF_6 ainsi que le NaCl généré sont éliminés par filtration. Le filtrat est dilué jusqu'à un volume total de 1,00 L avec du CCl_4 (solution **H**). Les spectres RMN ²⁹Si et ¹⁹F de la solution **H** montrent que SiF₄ est le seul composé silylé. Sur le spectre RMN ¹⁹F, en plus de ceux de SiF₄, des signaux correspondant à CFCl₃, CF₂Cl₂, CF₃Cl et CF₄ sont observés (cf. Tableau 1). Les rapports d'intégration dans le spectre RMN ¹⁹F sont proportionnels au nombre de noyaux de fluor.

Tat	วเค	a	L	1

Données NMR ¹⁹ F	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Rapport d'intégration	45.0	65.0	18.0	2.0		

SiF₄est hydrolysé pour former H₂SiF₆ selon l'éq. 8 suivante :

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

La solution **H** (10 mL) est versée dans un excès d'eau, entraînant l'hydrolyse complète de SiF₄. Après séparation, le H_2SiF_6 généré par l'hydrolyse dans la solution aqueuse est neutralisé et complètement converti en Na₂SiF₆ (solution aqueuse **J**).

Le précipité de Na₂SiF₆ n'ayant pas réagi et de NaCl, éliminé par filtration dans l'étape initiale (souligné), est complètement dissous dans l'eau pour donner une solution aqueuse (solution **K**; 10,0 L).

On réalise ensuite des titrages par précipitation avec la solution **G**. Les volumes équivalents de solution **G** obtenus sont les suivants :

· Pour la solution **J** (quantité totale) : 61.6 mL.

• Pour 100 mL de la solution **K** : 44.4 mL.

Il faut noter ici que la coexistence de NaCl ou de SiO₂ n'a aucun effet sur le titrage par précipitation.

- **B.2** <u>**Calculer**</u> la masse du NaCl produit dans le récipient de réaction (information 15pt soulignée), et <u>**calculer**</u> la masse (*x* [g]) de Na₂SiF₆ utilisé comme réactif initial.
- **B.3** 77,8 % du CCl₄ utilisé comme matière première n'a pas réagi. <u>Calculer</u> la masse 8pt de CF₃Cl générée.

Mysterious Silicon

12 % of the total								
Question	A.1	A.2	A.3	A.4	B.1	B.2	B.3	Total
Points	9	7	6	10	5	15	8	60
Score								

Although silicon is also a group 14 element like carbon, their properties differ significantly.

Part A

Unlike the carbon–carbon triple bond, the silicon–silicon triple bond in a compound formulated as $R^1-Si \equiv Si-R^1$ (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.

When $R^1-Si \equiv Si-R^1$ is treated with an alkyne ($R^2-C \equiv C-R^2$), the four-membered-ring compound **A** is formed as an initial intermediate. Further reaction of another molecule of $R^2-C \equiv C-R^2$ with **A** affords isomers **B** and **C**, both of which have benzene-like cyclic conjugated structures, so-called 'disilabenzenes' that contain a six-membered ring and can be formulated as $(R^1-Si)_2(R^2-C)_4$.

BEL-3 C-5 Q-2

$R^1-Si\equiv Si-R^1 + R^2-C\equiv C-R^2 \longrightarrow A \xrightarrow{R^2-C\equiv C-R^2} B + C$

The ¹³C NMR analysis of the corresponding six-membered ring skeletons Si_2C_4 shows two signals for **B** and one signal for **C**.

- **A.1 Draw** the structural formulae of **A**, **B**, and **C** using R¹, R², Si, and C, with one of 9pt the possible resonance structures.
- **A.2** <u>**Calculate**</u> the aromatic stabilization energy (ASE) for benzene and **C** (in the case of $R^1 = R^2 = H$) as positive values, considering the enthalpy change in some hydrogenation reactions of unsaturated systems shown below (Fig. 1).

When a xylene solution of **C** is heated, it undergoes isomerization to give an equilibrium mixture of compounds **D** and **E**. The molar ratio is **D** : **E** = 1 : 40.0 at 50.0 °C and **D** : **E** = 1 : 20.0 at 120.0 °C.

A.3 Calculate ΔH for the transformation of **D** to **E**. Assume that ΔH does not depend on temperature.

The isomerization from **C** to **D** and to **E** proceeds via transformations of π -bonds into σ -bonds without breaking any σ -bonds. A ¹³C NMR analysis revealed one signal for the Si₂C₄ skeleton of **D** and two signals for that of **E**. The skeleton of **D** does not contain any three-membered rings, while **E** has two three-membered rings that share an edge.

A.4 Draw the structural formulae of **D** and **E** using R¹, R², Si, and C.

10pt

Part B

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.

The fluorination reaction of CCl_4 using Na_2SiF_6 was carried out as follows.

• Standardization of Na₂SiF₆ solution :

· Preparation

Aqueous solution **F**: 0.855 g of Na₂SiF₆ (188.053 g mol⁻¹) dissolved in water (total volume: 200 mL).

Aqueous solution **G**: 6.86 g of $Ce_2(SO_4)_3$ (568.424 g mol⁻¹) dissolved in water (total volume: 200 mL).

· Procedure

Precipitation titration of a solution **F** (50.0 mL) by dropwise adding solution **G** in the presence of xylenol orange, which coordinates to Ce^{3+} , as an indicator. After adding 18.8 mL of solution **G**, the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains Ce^{3+} , and the only resulting silicon compound is Si(OH)₄.

B.1 <u>Write</u> the balanced equation for the reaction of Na_2SiF_6 with $Ce_2(SO_4)_3$. 5pt

• Reaction of CCl₄with Na₂SiF₆:

(Substance losses by e.g. evaporation are negligible during the following operations.)

Na₂SiF₆(*x* [g]) was added to CCl₄ (500.0 g) and heated to 300 °C in a sealed pressure-resistant reaction vessel. The unreacted Na₂SiF₆ and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with CCl₄ (solution **H**). The ²⁹Si and ¹⁹F NMR spectra of solution **H** showed SiF₄ as the only silicon compound. In the ¹⁹F NMR spectrum, in addition to SiF₄, signals corresponding to CFCl₃, CF₂Cl₂, CF₃Cl, and CF₄ were observed (*cf.* Table 1). The integration ratios in the ¹⁹F NMR spectrum are proportional to the number of fluorine nuclei.

¹⁹ F NMR data	CFCl ₃	CF ₂ Cl ₂	CF ₃ Cl	CF ₄		
Integration ratio	45.0	65.0	18.0	2.0		

Table 1

 SiF_4 is hydrolyzed to form H_2SiF_6 according to the following eq. 8:

$$3SiF_4 + 2H_2O \rightarrow SiO_2 + 2H_2SiF_6 \tag{8}$$

Solution **H** (10 mL) was added to an excess amount of water, which resulted in the complete hydrolysis of SiF₄. After separation, the H_2SiF_6 generated from the hydrolysis in the aqueous solution was neutralized and completely converted to Na_2SiF_6 (aqueous solution **J**).

BEL-3 C-5 Q-4

The precipitate of unreacted Na_2SiF_6 and NaCl, which was removed by filtration in the initial step (underlined), was completely dissolved in water to give an aqueous solution (solution **K**; 10.0 L).

Then, additional precipitation titrations using solution **G** were carried out, and the endpoints of the titrations with **G** were as follows:

·For solution **J** (entire amount): 61.6 mL.

·For 100 mL of solution K: 44.4 mL.

It should be noted here that the coexistence of NaCl or SiO₂ has no effect on the precipitation titration.

- **B.2** <u>**Calculate**</u> the mass of the NaCl produced in the reaction vessel (information 15pt underlined), and <u>**calculate**</u> the mass (x [g]) of the Na₂SiF₆ used as a starting material.
- **B.3** 77.8% of the CCl_4 used as a starting material was unreacted. <u>Calculate</u> the mass 8pt of CF_3Cl generated.

A5-1 French Belgium (Belgium)

BEL-3 C-5 A-1

Ce mystérieux silicium

Partie A

 A (3 pt)
 B (3 pt)
 C (3 pt)

 Image: C (3 pt)
 Image: C (3 pt)

A.2 (7 pt)

 $C_6H_6:$ kJ mol⁻¹, C : kJ mol⁻¹

A.3 (6 pt)			
$\Delta H =$	kJ mol ⁻¹		
A.4 (10 pt))		
	D (5 pt)	E (5 pt)	

Partie B

B.1 (5 pt)

B.2 (15 pt)

(Suite à la page suivante)

B.2 (cont.)			
NaCl :	g, Na ₂ SiF ₆ :	g	

B.3 (8 pt)

 $CF_3CI:$ g

BEL-3 C-6 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Chimie du solide et métaux de transitions

					13 % du	total					
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Total
Barème	6	3	3	6	4	4	4	5	5	5	45
Points											

Volcan sur l'île de Sakurajima

Partie A

Le Japon est l'un des pays au monde présentant le plus de volcans. Quand les silicates du magma cristallisent, une partie des ions des métaux de transition (M^{n+}) du magma sont incorporés dans les silicates. Les ions M^{n+} étudiés dans ce problème sont coordonnés à des ions oxydes (O^{2-}) et adoptent une géométrie tétraédrique tétracoordonnée (T_d) dans le magma et une géométrie octaédrique hexacoordonnée (O_h) dans les minéraux silicatés. Dans chacun des cas, ils présentent une configuration électronique à haut spin. La constante de partage D des ions M^{n+} entre les minéraux silicatés et le magma s'écrit :

$$D = \frac{[M]_s}{[M]_l}$$

où $[M]_s$ et $[M]_l$ sont respectivement les concentrations de M^{n+} dans les minéraux silicatés et dans le magma. Le tableau ci-dessous présente les exemples des valeurs de *D* des ions Cr^{2+} et Mn^{2+} .

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

On notera Δ_0 l'écart énergétique entre les niveaux d'énergie des orbitales d de Mⁿ⁺ et CFSE^O l'énergie de stabilisation du champ cristallin dans une géométrie O_h . De la même manière, on notera Δ_T et CFSE^T leurs homologues dans une géométrie T_d .

A.1 <u>**Calculer**</u> $|CFSE^O - CFSE^T| = \Delta CFSE$ en fonction de Δ_O pour Cr^{2+} , Mn^{2+} , et Co^{2+} . 6pt On considèrera que $\Delta_T = 4/9\Delta_O$.

Les oxydes métalliques MO (avec M = Ca, Ti, V, Mn ou Co) cristallisent dans une structure ionique où les ions M^{n+} ont une géométrie O_h et une configuration électronique à haut spin. L'enthalpie réticulaire de ces oxydes est principalement due aux interactions coulombiennes liées au rayon et à la charge de ces ions et à certaines contributions du CFSE de M^{n+} en géométrie O_h .

		1			1
	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Partie B

Un oxyde mixte **A** qui contient des ions La³⁺ et Cu²⁺ cristallise dans une maille quadratique représentée en Fig. 1. Dans l'octaèdre [CuO₆], la distance l_z Cu–O le long de l'axe z est plus grande que la distance l_x le long de l'axe x et [CuO₆] est déformé par rapport à la géométrie O_h . Cette déformation lève la dégénérescence des orbitales $e_q (d_{x^2-y^2} et d_{z^2})$.

A peut être synthétisé par décomposition thermique (ou pyrolyse) d'un complexe **B**, lui-même formé par mélange de chlorures métalliques en milieu ammoniacal dilué et d'une solution contenant de l'acide squarique, un diacide de formule $C_4H_2O_4$. La pyrolyse sous air sec de **B** donne lieu, en chauffant jusqu'à 200 °C, à une perte d'eau de cristallisation correspondant à 29,1 %. Puis, jusqu'à 700 °C, un dégagement de CO_2 provoque une seconde perte en masse. La masse totale perdue au cours de la formation de **A** à partir de **B** est de 63,6 %. On précise que seuls de l'eau et du CO_2 sont éliminés lors de la pyrolyse.

B.1	<u>Écrire</u> les formules de A et B .	6pt
B.2	<u>Calculer</u> l_x and l_z à partir de la Fig. 1.	4pt
B.3	Pour l'ion Cu ²⁺ dans l'octaèdre déformé [CuO ₆] dans A représenté en Fig. 1, <u>écrire</u> dans (i) et (ii) les noms des orbitales e _q (d _{x²-u²} et d _{z²}) après leur sépara-	4pt
	tion, et dessiner la configuration électronique dans la case en pointillés de la feuille réponse.	

A est un isolant. Quand un ion La³⁺est substitué par un ion Sr²⁺, un trou porteur de courant est produit dans le réseau cristallin. Ainsi, lorsqu'il est dopé par du Sr²⁺, **A** devient même supraconducteur endessous de 38 K! Une réaction de substitution effectuée sur **A** a donné lieu à la formation de $2,05 \times 10^{27}$ trous par m³.

B.4 Calculer le pourcentage molaire des ions La³⁺ substitués par un ion Sr²⁺ au 4pt cours de cette réaction. On notera que les valences des ions et la structure cristalline ne sont pas modifiées lors de la réaction de substitution.

Partie C

 $Cu_2(CH_3CO_2)_4$ est formé de quatre $CH_3CO_2^-$ coordinés à deux Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ présente un haut degré de symétrie, avec deux axes qui passent par les atomes de carbone des $CH_3CO_2^-$ et un axe qui passe par les deux Cu^{2+} , ces éléments étant orientés de manière orthogonale les uns par rapport aux autres. Quand un ligand dicarboxylique est utilisé à la place de $CH_3CO_2^-$, un *complexe-cage* est formé. Le complexe-cage $Cu_4(L1)_4$ est constitué d'un dicarboxylate plan L1 (Fig. 2B) et d'un Cu^{2+} (Fig. 2C). L'angle θ entre les directions des liaisons de coordination, symbolisées par des flèches dans la Fig. 2B, détermine la structure du complexe-cage. θ vaut 0° dans le cas de L1. On notera que les atomes d'hydrogène ne sont pas représentés dans la Fig. 2.

Fig. 2

Un complexe de zinc, $Zn_4O(CH_3CO_2)_6$, contient quatre ions Zn^{2+} tétravalents, six $CH_3CO_2^-$ et un O^{2-} (Fig. 3A). Dans $Zn_4O(CH_3CO_2)_6$, l'ion O^{2-} est situé à l'origine et les trois axes passant par les atomes de carbone de $CH_3CO_2^-$ sont orientés orthogonalement les uns par rapport aux autres. Quand le *p*-benzènedicarboxylate (Fig. 3B, **L3**, $\theta = 180^\circ$) est utilisé à la place de $CH_3CO_2^-$, on obtient un solide cristal-lin (**X**) appelé *polymère de coordination poreux* (Fig. 3C), formé des entités contenant les ions Zn^{2+} reliées les unes aux autres. **X**, de composition $[Zn_4O(L3)_3]_n$, possède une structure cristalline cubique présentant des pores nanométriques. Dans la Fig. 3D, l'un de ces pores est représenté par une sphère et chacun des groupes tétraédriques d'ions Zn^{2+} est représenté par un polyèdre gris sombre en Fig. 3C et 3D. On notera que les atomes d'hydrogène ne sont pas représentés dans la Fig. 3.

Fig. 3

- **C.2 X** présente une maille cubique de côté de longueur a (Fig. 3C) et une masse 5pt volumique de 0,592 g cm⁻³. **Calculer** a en [cm].
- **C.3 X** présente un très grand nombre de pores. 1 g de **X** peut contenir 3.0×10^2 mL 5pt de CO₂ gazeux dans ses pores sous 1 bar et à 25 °C. <u>Calculer</u> le nombre moyen de molécules de CO₂ par pore.

The Solid-State Chemistry of Transition Metals

				13	3 % of th	e total					
Question	A.1	A.2	A.3	B.1	B.2	B.3	B.4	C.1	C.2	C.3	Total
Points	6	3	3	6	4	4	4	5	5	5	45
Score											

Volcano at Sakurajima island

Part A

Japan is one of the countries with the highest numbers of volcanos worldwide. When silicate minerals crystallize from magma, a part of the transition-metal ions (M^{n+}) in the magma is incorporated into the silicate minerals. The M^{n+} studied in the problem are coordinated by oxide ions (O^{2-}) and adopt a four-coordinate tetrahedral (T_d) geometry in the magma and six-coordinate octahedral (O_h) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of M^{n+} between the silicate minerals and magma, D, can be expressed by:

$$D = \frac{[M]_{s}}{[M]_{1}}$$

where $[M]_s$ and $[M]_l$ are the concentrations of M^{n+} in the silicate minerals and the magma, respectively. The table below shows the D values of Cr^{2+} and Mn^{2+} as examples.

	Cr ²⁺	Mn ²⁺
D	7.2	1.1

Let Δ_0 and CFSE^O be the energy separation of the d-orbitals of Mⁿ⁺ and the crystal-field stabilization energy in a O_h field, respectively. Let Δ_T and CFSE^T be those in a T_d field.

- **A.1** <u>**Calculate**</u> $|CFSE^O CFSE^T| = \Delta CFSE$ in terms of Δ_O for Cr^{2+} , Mn^{2+} , and Co^{2+} ; 6pt assume $\Delta_T = 4/9\Delta_O$.
- A.2 A linear relationship is observed by plotting $\ln D$ against $\Delta CFSE / \Delta_0$ in the Carte- 3pt sian coordinate system shown below. Estimate D for Co^{2+} . 2.0 1.5 G 1.0 0.5 1.0 0.5

Metal oxides MO (M: Ca, Ti, V, Mn, or Co) crystallize in a rock-salt structure wherein the M^{n+} adopts an O_h geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of M^{n+} in the O_h field.

0.2 0.3

 $\Delta CFSE / \Delta_{O}$

0.4

0.5

0

0.1

A.3 <u>**Choose**</u> the appropriate set of lattice enthalpies [kJ mol⁻¹] from one of the op- 3pt tions (a) to (f).

	CaO	TiO	VO	MnO	CoO
(a)	3460	3878	3913	3810	3916
(b)	3460	3916	3878	3810	3913
(c)	3460	3913	3916	3810	3878
(d)	3810	3878	3913	3460	3916
(e)	3810	3916	3878	3460	3913
(f)	3810	3913	3916	3460	3878

Part B

A mixed oxide **A**, which contains La³⁺ and Cu²⁺, crystallizes in a tetragonal unit cell shown in Fig.1. In the [CuO₆] octahedron, the Cu–O length along the *z*-axis (l_z) is longer than that of the *x*-axis (l_x), and [CuO₆] is distorted from the regular O_h geometry. This distortion removes the degeneracy of the e_g orbitals (d_{x²-y²} and d_{z²}).

A can be synthesized by thermal decomposition (pyrolysis) of complex **B**, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid $C_4H_2O_4$, i.e., a diacid. The pyrolysis behavior of **B** in dry air shows a weight loss of 29.1% up to 200 °C due to the loss of crystallization water, followed by another weight loss up to 700 °C due to the release of CO_2 . The total weight loss during the formation of **A** from **B** is 63.6%. It should be noted that only water and CO_2 are released in the pyrolysis reaction.

B.1	Write the chemical formulae for A and B .	6pt
B.2	<u>Calculate</u> l_x and l_z using Fig. 1.	4pt
B.3	For Cu^{2+} in the distorted $[CuO_6]$ octahedron in A of Fig. 1, <u>write</u> the names of the split e_g orbitals $(d_{x^2-y^2}$ and $d_{z^2})$ in (i) and (ii), and <u>draw</u> the electron configuration in the dotted box in your answer sheet.	4pt

A is an insulator. When one La³⁺ is substituted with one Sr²⁺, one hole is generated in the crystal lattice that can conduct electricity. As a result, the Sr²⁺-doped **A** shows superconductivity below 38 K. When a substitution reaction took place for **A**, 2.05×10^{27} holes m⁻³ were generated.

B.4 Calculate the percentage of Sr²⁺ substituted for La³⁺ based on the mole ratio 4pt in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

Part C

 $Cu_2(CH_3CO_2)_4$ is composed of four $CH_3CO_2^-$ coordinated to two Cu^{2+} (Fig. 2A). $Cu_2(CH_3CO_2)_4$ exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four $CH_3CO_2^$ and an axis passing through the two Cu^{2+} , all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of $CH_3CO_2^-$, a "cage complex" is formed. The cage complex $Cu_4(L1)_4$ is composed of planar dicarboxylate L1 (Fig. 2B) and Cu^{2+} (Fig. 2C). The angle θ between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The θ is 0° for L1. Note that hydrogen atoms are not shown in Fig. 2.

Fig. 2

C.1 The θ of the planar dicarboxylate **L2** below is fixed to 90°. If the composition of the cage complex formed from **L2** and Cu^{2+} is $\operatorname{Cu}_n(\operatorname{L2})_m$, **give** the smallest integer combination of *n* and *m*. Assume that only the CO_2^n groups of **L2** form a coordination bond to Cu^{2+} ions.

A zinc complex, $Zn_4O(CH_3CO_2)_6$, contains four tetrahedral Zn^{2+} , six $CH_3CO_2^{-}$, and one O^{2-} (Fig. 3A). In $Zn_4O(CH_3CO_2)_6$, the O^{2-} is located at the origin, and the three axes passing through the carbon atoms of $CH_3CO_2^{-}$ are oriented orthogonal relative to each other. When *p*-benzenedicarboxylate (Fig. 3B, L3, $\theta = 180^\circ$) is used instead of $CH_3CO_2^{-}$, the Zn^{2+} clusters are linked to each other to form a crystalline solid (X) that is called a "porous coordination polymer" (Fig. 3C). The composition of X is $[Zn_4O(L3)_3]_n$, and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral Zn^{2+} cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.

- **C.2 X** has a cubic unit cell with a side length of *a* (Fig. 3C) and a density of 0.592 5pt $g \text{ cm}^{-3}$. **Calculate** *a* in [cm].
- **C.3 X** contains a considerable number of pores, and 1 g of **X** can accommodate 5pt 3.0×10^2 mL of CO₂ gas in the pores at 1 bar and 25 °C. <u>Calculate</u> the average number of CO₂ molecules per pore.

A6-1 French Belgium (Belgium)

Chimie du solide et métaux de transitions

Partie A				
A.1 (6 pt)				
Cr ²⁺ ·	Λ_{n} Mn ²⁺ ·	Λ_{c} Co^{2+}	٨	
	<u></u> Δ ₀ , <u>MIT</u> .	d ₀ , <u>co</u>	<u>\</u> D	

BEL-3 C-6 A-1

Partie B

B.1 (6 pt)		
	5	
<u>A</u> :	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	
<u>A</u> : B.2 (4 pt)	, <u>B</u> :	

BEL-3 C-6 A-3

Partie C

C.1 (5 pt)			
<u>n</u> =	, <u>m</u> =	-	
C.2 (5 pt)			

 $\underline{a} =$

cm

C.3 (5 pt)

BEL-3 C-7 C-1

BEL-3 C-7 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Jouons l'aromaticité de composés non benzéniques

13 % du total					
Question	A.1	A.2	A.3	B.1	Total
Barème	5	2	19	10	36
Points					

Prof. Nozoe (1902–1996) est un pionnier de la recherche dans le domaine des composés aromatiques non benzéniques, qui sont aujourd'hui omniprésents en chimie organique.

Crédits Photo : Tohoku Univ.

Partie A

La lineariifolianone est un produit naturel de structure unique, qui a été isolé de la plante *Inula linariifolia*. À partir du valencène (1), une transformation en une étape donne 2. Une transformation en trois étapes via le composé 3 donne ensuite 4. L'érémophilène (5) est converti en 6 en utilisant la même transformation en quatre étapes.

Inula linariifolia

A.1 <u>**Dessiner**</u> les structures des composés **2** et **6**, en identifiant clairement la sté- 5pt réochimie lorsque cela est nécessaire.

La cétone **4** est ensuite convertie en ester **15**. Le composé **8** (masse molaire MW : 188) conserve tous les centres stéréogènes de **7**. Les composés **9** et **10** ont cinq centres stéréogènes et aucune double liaison

carbone-carbone. On utilise H₂¹⁸O au lieu de H₂¹⁶O pour synthétiser les linéariifolianones **13** and **14** marquées au ¹⁸O, à partir de **11** et **12** respectivement. Les composés **13** et **14** sont deux isotopomères marqués au ¹⁸O. Si l'on ignore le marquage isotopique, les deux composés **13** et **14** donnent le même produit **15** avec une stéréochimie identique.

Partie B

Le composé **19** est synthétisé comme indiqué ci-dessous. Une illustration de l'aromaticité non benzénique est l'utilisation de **19** comme activateur pour les alcools. **20** est converti en **22** via la paire d'ions intermédiaire **21**. Bien que la formation de **21** soit observée par RMN, **21** se décompose progressivement pour donner **1** et **22**.

Playing with Non-benzenoid Aromaticity

13 % of the total					
Question	A.1	A.2	A.3	B.1	Total
Points	5	2	19	10	36
Score					

Prof. Nozoe (1902–1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.

Photo courtesy: Tohoku Univ.

Part A

Lineariifolianone is a natural product with a unique structure, which was isolated from *Inula linariifolia*. From valencene (1), a one-step conversion yields **2**, before a three-step conversion via **3** yields ketone **4**. Eremophilene (**5**) is converted into **6** by performing the same four-step conversion.

Inula linariifolia

A.1 Draw the structures of **2** and **6** and clearly identify the stereochemistry where 5pt necessary.

Then, ketone **4** is converted into ester **15**. Compound **8** (molecular weight: 188) retains all the stereocenters in **7**. Compounds **9** and **10** have five stereocenters and no carbon-carbon double bonds. Assume

that $H_2^{18}O$ is used instead of $H_2^{16}O$ for the synthesis of ¹⁸O-labelled-lineariifolianones **13** and **14** from **11** and **12**, respectively. Compounds **13** and **14** are ¹⁸O-labelled isotopomers. Ignoring isotopic labelling, both **13** and **14** provide the same product **15** with identical stereochemistry.

Part B

Compound **19** is synthesized as shown below. In relation to non-benzenoid aromaticity, **19** can be used as an activator for alcohols, and **20** was converted to **22** via ion-pair intermediate **21**. Although the formation of **21** was observed by NMR, **21** gradually decomposes to give **18** and **22**.

B.1 Draw the structures of **17–19** and **21**. Identifying the stereochemistry is not 10pt necessary.

Jouons avec l'aromaticité de composés non benzéniques

Partie A

2 (2 pt)	6 (3 pt)	

A.2 (2 pt)

BEL-3 C-7 A-2

BEL-3 C-7 A-3

Partie B

17 (2 pt)	18 (2 pt)	
19 (3 pt)	21 (3 pt)	

BEL-3 C-8 C-1

BEL-3 C-8 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Molécules organiques dynamiques et leur chiralité

11 % du total						
Question	A.1	A.2	A.3	B.1	B.2	Total
Barème	9	3	7	3	4	26
Points						

Partie A

Les hydrocarbures aromatiques polycycliques avec des liaisons successives en ortho sont appelés [n]carbohélicènes (ici, n représente le nombre de cycles à six atomes) (voir ci-dessous). Une bonne méthode pour préparer le [4]carbohélicène (**[4]C**) consiste en une photoréaction comme indiqué ci-dessous, via un intermédiaire (**Int.**) qui est facilement oxydé par l'iode.

La photoréaction se déroule de manière similaire à l'exemple suivant.

Note : Pour l'ensemble du Problème 8, veuillez dessiner des alternances de simples et doubles liaisons, comme représenté dans les exemples du carbohelicène. N'utilisez pas de cercles pour les systèmes conjugués π .

A.1	Dessinez les structures de A-C. Les stéréoisomères doivent être distingués.	9pt
A.2	Les tentatives de synthèse du [5]carbohélicène à partir du même sel de phos- phonium et d'un composé de départ approprié n'ont abouti qu'à la formation d'une quantité infime de [5]carbohélicène. À la place, on obtient le produit D dont la masse moléculaire est inférieure de 2 Da à celle du [5]carbohélicène. Les déplacements chimiques en RMN ¹ H de D sont indiqués ci-dessous. Dessiner la structure de D . [D (δ , ppm dans CS ₂ , $T_{ambiante}$.) : 8,85 (2H); 8,23 (2H); 8,07 (2H); 8,01 (2H); 7,97 (2H); 7,91 (2H)]	3pt

Les [5]- et [n]carbohélicènes de plus grande taille présentent une chiralité hélicoïdale et l'interconversion entre les énantiomères de ces hélicènes est très lente à température ambiante. La chiralité des [n]carbohélicènes est définie comme (M) ou (P), comme montré ci-dessous.

Les énantiomères des [n]carbohélicènes dont l'indice n est supérieur à 4 peuvent être séparés par chromatographie sur colonne chirale, méthode mise au point par le professeur Yoshio Okamoto.

Crédit photo : The Japan Prize Foundation

BEL-3 C-8 Q-3

Les hélicènes multiples sont des molécules qui contiennent deux ou plusieurs structures de type hélicène. Si l'on tient compte de la chiralité hélicoïdale, pour un hélicène multiple, il existe plusieurs stéréoisomères. Par exemple, le composé **E** contient trois fragments de type [5]carbohélicène par molécule. L'un des stéréoisomères est décrit par (*P*, *P*, *P*) comme indiqué ci-dessous.

A.3 Comme présenté ci-dessous, la trimérisation du 1,2-dibromobenzène induite 7pt par le nickel génère du triphénylène. Lorsque la même réaction est appliquée à un énantiomère de **F**, (*P*)-**F**, on obtient l'hélicène multiple **G** ($C_{66}H_{36}$). Étant donné qu'il n'y a pas d'interconversion entre les stéréoisomères au cours de la réaction, <u>identifier tous</u> les stéréoisomères possibles de **G** formés dans ce processus, sans redondance. Un des isomères doit être dessiné complètement avec la chiralité précisée comme dans l'exemple ci-dessus, avec des étiquettes numériques comme référence; les autres stéréoisomères doivent être répertoriés avec des numéros de position et des étiquettes M et P selon la même numérotation. Par exemple, les autres stéréoisomères de **E** doivent être répertoriés comme ceci : (1, 2, 3) = (P, M, P), (P, M, M), (P, P, M), (M, M, M), (M, M, P), (M, P, P), et (M, P, M).

(P)-**F**

Partie B

Le sumanène est un hydrocarbure en forme de bol qui a été observé pour la première fois au Japon en 2003. Le nom "sumanène" dérive d'un mot sanskrit-hindi "suman" qui signifie tournesol.

BEL-3 C-8 Q-4

La synthèse du sumanène a été réalisée par une séquence constituée d'une métathèse à ouverture de cycle et d'une métathèse cyclisante.

Des réactions de métathèse représentatives catalysées par un catalyseur au ruthénium (Ru*) sont présentées ci-dessous.

B.1 Dessiner la structure de l'intermédiaire **I** (sa stéréochimie n'est pas requise). 3pt

Dynamic Organic Molecules and Their Chirality

11 % of the total						
Question	A.1	A.2	A.3	B.1	B.2	Total
Points	9	3	7	3	4	26
Score						

Part A

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, n represents the number of six-membered rings) (see below). [4]Carbohelicene ([4]C) is efficiently prepared by a route using a photoreaction as shown below, via an intermediate (Int.) that is readily oxidized by iodine.

The photoreaction proceeds in a manner similar to the following example.

Note: For all of Question 8, please draw alternating single and double bonds in your answers to the problems as depicted in the examples of carbohelicene. Do not use circles for conjugated π systems.

A.1 Draw the structures of A-C. Stereoisomers should be distinguished.
9pt
A.2 Attempts to synthesize [5]carbohelicene from the same phosphonium salt and an appropriate starting compound resulted in the formation of only a trace amount of [5]carbohelicene, instead affording product D whose molecular weight was 2 Da lower than that of [5]carbohelicene. The ¹H NMR chemical shifts of D are listed below. Draw the structure of D. [D (δ, ppm in CS₂, r.t.), 8.85 (2H), 8.23 (2H), 8.07 (2H), 8.01 (2H), 7.97 (2H), 7.91 (2H)]

[5]- and larger [n]carbohelicenes have helical chirality and interconversion between enantiomers of these helicenes is significantly slow at room temperature. The chirality of [n]carbohelicenes is defined as (*M*) or (*P*) as shown below.

[n]Carbohelicenes with n larger than 4 can be enantiomerically separated by a chiral column chromatography, which was developed by Prof. Yoshio Okamoto.

Photo courtesy: The Japan Prize Foundation

Multiple helicenes are molecules that contain two or more helicene-like structures. If its helical chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound **E** contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as (P, P, P) as shown below.

A.3 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to an enantiomer of **F**, (*P*)-**F**, multiple helicene **G** ($C_{66}H_{36}$) is obtained. Given that interconversion between stereoisomers does not occur during the reaction, **identify all** the possible stereoisomers of **G** formed in this process, without duplication. As a reference, one isomer should be drawn completely with the chirality defined as in the example above, with numerical labels; the other stereoisomers should be listed with location numbers and *M* and *P* labels according to the same numbering. For instance, the other stereoisomers of **E** should be listed as (1, 2, 3) = (*P*, *M*, *P*), (*P*, *M*, *M*), (*P*, *P*, *M*), (*M*, *M*, *M*), (*M*, *M*, *P*), (*M*, *P*, *P*), and (*M*, *P*, *M*).

Part B

Sumanene is a bowl-shaped hydrocarbon that was first reported in Japan in 2003. The name "sumanene" derives from a Sanskrit-Hindi word "suman" that means sunflower. The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis.

Representative metathesis reactions catalyzed by a ruthenium catalyst (Ru*) are shown below.

B.1 Draw the structure of intermediate **I** (its stereochemistry is not required). 3pt

A8-1 French Belgium (Belgium)

Molécules organiques dynamiques et leur chiralité

Partie A

A.1 (9 pt)

A (3 pt)	B (3 pt)	C (3 pt)

 $\textbf{A.2}~(3~\mathrm{pt})$

BEL-3 C-8 A-2

A.3 (7 pt)

BEL-3 C-8 A-3

Partie B

B.1 (3 pt)

B.2~(4~pt)

BEL-3 C-9 C-1

BEL-3 C-9 C Louis Pecheur

Please return this cover sheet together with all the related question sheets.

Liaisons dangereuses dans les capsules

10 % du total						
Question	A.1	A.2	A.3	A.4	A.5	Total
Barème	13	2	2	3	3	23
Points						

Les enfants sages ne font pas ça, mais si vous découpez une balle de tennis, vous pouvez la désassembler en deux morceaux en forme de " U ".

Sur la base de cette idée, les composés **1** et **2** ont été synthétisés sous forme de molécules en forme de U tailles différentes. Le composé **3** a été préparé à titre de comparaison avec le composé **1** et le comportement d'encapsulation de ces composés a été étudié.

Le schéma de synthèse de **2** est représenté ci-dessous. La composition élémentaire massique du composé **9** est la suivante C : 40,49 %; H : 1,70 %; O : 17,98 % .

BEL-3 C-9 Q-3

A.1 <u>**Dessiner**</u> les structures de **4–9**. On pourra négliger la stéréochimie. Utiliser 13pt "PMB" comme substituant au lieu de dessiner la structure complète du groupe p-méthoxybenzyle comme dans le schéma ci-dessus.

Dans le spectre de masse de **1**, le pic correspondant à son dimère $(\mathbf{1}_2)$ est clairement observé, alors qu'aucun pic pour $\mathbf{3}_2$ n'est observé dans le spectre de **3**. Dans les spectres RMN ¹H d'une solution de $\mathbf{1}_2$, on constate que tous les protons NH issus de **1** sont chimiquement équivalents, et leur déplacement chimique est significativement différent de celui des protons NH de **3**. Ces données indiquent qu'il se forme des liaisons hydrogène entre les groupements NH de **1** et les atomes **X** d'une autre molécule de **1** pour former la capsule dimère.

BEL-3 C-9 Q-4

A.2	<u>Entourer</u> tous les atomes X dans 1.	2pt
A.3	Donner le nombre de liaisons hydrogène dans la capsule dimère (1_2).	2pt

BEL-3 C-9 Q-5 French Belgium (Belgium)

La capsule dimère de **1** (1₂) possède une cavité intérieure dans laquelle une petite molécule **Z** adaptée peut être encapsulée. Ce phénomène se traduit par l'équation suivante :

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z}@\mathbf{1}_2 \tag{1}$$

La constante thermodynamique de l'équilibre d'encapsulation de Z en 1_2 est la suivante :

$$K_{\mathsf{a}} = \frac{[\mathsf{Z} \textcircled{\texttt{a}} \mathsf{1}_2]}{[\mathsf{Z}][\mathsf{1}_2]} \tag{2}$$

L'encapsulation d'une molécule dans une capsule peut être suivie par spectroscopie RMN. Par exemple, pour 1_2 dans C_6D_6 , on obtient des signaux différents dans les spectres RMN ¹H avant et après l'ajout de CH_4 .

Le composé **2** forme également une capsule dimérique rigide et plus grande (2_2). Le spectre RMN¹H de a été mesuré dans C_6D_6 , dans C_6D_5F , et dans un mélange de solvants C_6D_6/C_6D_5F , toutes les autres conditions étant identiques. Les déplacements chimiques des protons H^a de **2** dans les solvants susmentionnés sont résumés ci-dessous. Aucun autre signal provenant des protons H^a de **2**, à l'exception de celui indiqué, n'a été observé. On considère que l'intérieur de la capsule est toujours rempli avec le plus grand nombre possible de molécules de solvant et que chaque signal correspond à une espèce de la capsule remplie.

solvant	δ (ppm) de H a
C ₆ D ₆	4,60
C ₆ D ₅ F	4,71
C ₆ D ₆ / C ₆ D ₅ F	4,60; 4,71; 4,82

A.4 <u>**Déterminer**</u> le nombre de molécules C_6D_6 et C_6D_5F encapsulées dans 2_2 res- 3pt ponsable de chaque signal H^a.

BEL-3 C-9 Q-6

Les analyses de RMN ¹H dans C₆D₆révèlent que 2_2 peut incorporer une molécule d'acide 1adamantanecarboxylique (AdA). Les constantes d'association (K_a) qui sont exprimées ci-dessous ont été déterminées à différentes températures. [solvent@**2**a] désigne une espèce contenant une ou plusieurs molécules de solvant

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

De même, des mesures RMN ¹H ont permis de déterminer à différentes températures les valeurs de K_a (équation (2)) pour l'équilibre entre CH₄ et $\mathbf{1}_2$. L'évolution en température des deux constantes d'association (ln K_a en fonction de **1/T**) est représentée ci-dessous.

Aucune molécule C_6D_6 n'est encapsulée dans 1_2 . Pour la courbe **II**, l'entropie de réaction (ΔrS°) est(1) et l'enthalpie de réaction (ΔrH°) est(2). La force motrice de l'encapsulation dans la courbe **II** est donc(3). Par conséquent, la courbe **I** correspond à(4), et la courbe **II** correspond à(5).

	A	В
1)	positive	négative
2)	positive	négative
3)	$\Delta r S^{\circ}$	$\Delta r H^{\circ}$
)	1_2 et CH ₄	2_2 et AdA
	1_2 et CH_4	2_2 et AdA

Likes and Dislikes of Capsule

10 % of the total						
Question	A.1	A.2	A.3	A.4	A.5	Total
Points	13	2	2	3	3	23
Score						

Good kids don't do this, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.

Based on this idea, compounds **1** and **2** were synthesized as U-shaped molecules with different sizes. Compound **3** was prepared as a comparison of **1** and the encapsulation behavior of these compounds was investigated.

The synthetic route to **2** is shown below. The elemental composition of compound **9**: C; 40.49%, H; 1.70%, and O; 17.98% by mass.

A.1 Draw the structures of **4–9**; the stereochemistry can be neglected. Use "PMB" 13pt as a substituent instead of drawing the whole structure of *p*-methoxybenzyl group shown in the scheme above.

In the mass spectrum of **1**, the ion peak corresponding to its dimer (1_2) was clearly observed, whereas an ion peak for 3_2 was not observed in the spectrum of **3**. In the ¹H NMR spectra of a solution of 1_2 , all the NH protons derived from **1** were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of **3**. These data indicate that hydrogen bonds are formed between the NH moieties of **1** and atoms **X** of another molecule of **1** to form the dimeric capsule.

A.2	<u>Circle</u> all the appropriate atom(s) X in 1 .	2pt
A.3	<u>Give</u> the number of the hydrogen bonds in the dimeric capsule (1_2) .	2pt

BEL-3 C-9 Q-4 English (Official)

The dimeric capsule of $\mathbf{1}$ ($\mathbf{1}_2$) has an internal space wherein an appropriate small molecule Z can be encapsulated. This phenomenon is expressed by the following equation:

$$\mathsf{Z} + \mathbf{1}_2 \to \mathsf{Z} @ \mathbf{1}_2 \tag{1}$$

The equilibrium constant of the encapsulation of Z into $\mathbf{1}_2$ is given as below:

$$K_{\mathsf{a}} = \frac{[\mathsf{Z} \otimes \mathbf{1}_2]}{[\mathsf{Z}][\mathbf{1}_2]} \tag{2}$$

Encapsulation of a molecule into a capsule could be monitored by NMR spectroscopy. For example, 1_2 in C₆D₆ gave different signals in the ¹H NMR spectra before and after addition of CH₄.

Compound **2** also forms a rigid and larger dimeric capsule (2_2). The ¹H NMR spectrum of 2_2 was measured in C₆D₆, C₆D₅F, and a C₆D₆/C₆D₅F solvent mixture, with all other conditions being kept constant. The chemical shifts for the H^a proton of **2** in the above solvents are summarized below, and no other signals from the H^a in **2**, except for the listed, were observed. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species of the filled capsule.

solvent	δ (ppm) of H ^a
C ₆ D ₆	4.60
C ₆ D ₅ F	4.71
C ₆ D ₆ / C ₆ D ₅ F	4.60, 4.71, 4.82

A.4 Determine the number of C_6D_6 and C_6D_5F molecules encapsulated in 2_2 giving 3pt each H^a signal.

¹H NMR measurements in C_6D_6 revealed that 2_2 can incorporate one molecule of 1-adamantanecarboxylic acid (AdA), and the association constants (K_a) which are expressed below were determined for various temperatures. [solvent@ 2_2] denotes a species containing one or more solvent molecules.

$$K_{\mathsf{a}} = \frac{[\mathsf{Z}@\mathbf{2}_2]}{[\mathsf{Z}][\mathsf{solvent}@\mathbf{2}_2]} \tag{3}$$

Similarly, the K_a values of CH₄ and 1₂ given as eq (2) at various temperatures in C₆D₆ were also determined by ¹H NMR measurements. The plots of the two association constants (as ln K_a vs 1/*T*) are shown below.

No C_6D_6 molecule is encapsulated in 1_2 . In line **II**, the entropy change (ΔS) is (1) and enthalpy change (ΔH) is (2), indicating that the driving force for the encapsulation in line **II** is (3). Therefore, line **I** corresponds to (4), and line **II** corresponds to (5).

A.5	<u>Choose</u> the con and B.	rrect options in gaps (1)-	-(5) in the following paragra	aph from A 3pt
		A	В	
	(1)	positive	negative	
	(2)	positive	negative	
	(3)	ΔS	ΔH	
	(4)	1_2 and CH_4	2_2 and AdA	
	(5)	1_2 and CH_4	2_2 and AdA	

BEL-3 C-9 A-1

Liaisons dangereuses dans les capsules

A.1 (13 pt)				
	4 (2 pt)	5 (3 pt)		
	6 (2 pt)	7 (2 pt)		
	8 (2 pt)	9 (2 pt)		

BEL-3 C-9 A-2

A.2 (2 pt)

A.3 (2 pt)

$\textbf{A.4}~(3~\mathrm{pt})$

δ (ppm) de H ^a	nombre de C ₆ D ₆	nombre de C ₆ D ₅ F	
4,60 ppm			
4,71 ppm			
4,82 ppm			

A.5 (3 pt)

(1):	(2):	(3) :

<u>(4)</u>: (5):